Editor’s Preface to the Second Edition

THE LONG-AWAITED NEW EDITION of Newton’s Principles of Natural Philosophy is presented to you, kind reader, with many corrections and additions. The main topics of this celebrated work are listed in the table of contents and the index prepared for this edition. The major additions or changes are indicated in the author’s preface. Now something must be said about the method of this philosophy.

Those who have undertaken the study of natural science can be divided into roughly three classes. There have been those who have endowed the individual species of things with specific occult qualities, on which—they have then alleged—the operations of individual bodies depend in some unknown way. The whole of Scholastic doctrine derived from Aristotle and the Peripatetics is based on this. Although they affirm that individual effects arise from the specific natures of bodies, they do not tell us the causes of those natures, and therefore they tell us nothing. And since they are wholly concerned with the names of things rather than with the things themselves, they must be regarded as inventors of what might be called philosophical jargon, rather than as teachers of philosophy.

Therefore, others have hoped to gain praise for greater carefulness by rejecting this useless hodgepodge of words. And so they have held that all matter is homogeneous, and that the variety of forms that is discerned in bodies all arises from certain very simple and easily comprehensible attributes of the component particles. And indeed they are right to set up a progression from simpler things to more compounded ones, so long as they do not give those primary attributes of the particles any characteristics other than those given by nature itself. But when they take the liberty of imagining that the unknown shapes and sizes of the particles are whatever they please, and of assuming their uncertain positions and motions, and even further of feigning certain occult fluids that permeate the pores of bodies very freely, since they are endowed with an omnipotent subtlety and are acted on by occult motions: when they do this, they are drifting off into dreams, ignoring the true constitution of things, which is obviously to be sought in vain from false conjectures, when it can scarcely be found out even by the most certain observations. Those who take the foundation of their speculations from hypotheses, even if they then proceed most rigorously according to mechanical laws, are merely putting together a romance, elegant perhaps and charming, but nevertheless a romance.

There remains then the third type, namely, those whose natural philosophy is based on experiment. Although they too hold that the causes of all things are to be derived from the simplest possible principles, they assume nothing as a principle that has not yet been thoroughly proved from phenomena. They do not contrive hypotheses, nor do they admit them into natural science otherwise than as questions whose truth may be discussed. Therefore they proceed by a twofold method, analytic and synthetic. From certain selected phenomena they deduce by analysis the forces of nature and the simpler laws of those forces, from which they then give the constitution of the rest of the phenomena by synthesis. This is that incomparably best way of philosophizing which our most celebrated author thought should be justly embraced in preference to all others. This alone he judged worthy of being cultivated and enriched by the expenditure of his labor. Of this therefore he has given a most illustrious example, namely, the explication of the system of the world most successfully deduced from the theory of gravity. That the force of gravity is in all bodies universally, others have suspected or imagined; Newton was the first and only one who was able to demonstrate it [universal gravity] from phenomena and to make it a solid foundation for his brilliant theories.

I know indeed that some men, even of great reputation, unduly influenced by certain prejudices, have found it difficult to accept this new principle [of gravity] and have repeatedly preferred uncertainties to certainties. It is not my intention to carp at their reputation; rather, I wish to give you in brief, kind reader, the basis for making a fair judgment of the issue for yourself.

Therefore, to begin our discussion with what is simplest and nearest to us, let us briefly consider what the nature of gravity is in terrestrial bodies, so that when we come to consider celestial bodies, so very far removed from us, we may proceed more securely. It is now agreed among all philosophers that all bodies on or near the earth universally gravitate toward the earth. Manifold experience has long confirmed that there are no truly light bodies. What is called relative levity is not true levity, but only apparent, and arises from the more powerful gravity of contiguous bodies.

Furthermore, just as all bodies universally gravitate toward the earth, so the earth in turn gravitates equally toward the bodies; for the action of gravity is mutual and is equal in both directions. This is shown as follows. Let the whole body of the earth be divided into any two parts, whether equal or in any way unequal; now, if the weights of the parts toward each other were not equal, the lesser weight would yield to the greater, and the parts, joined together, would proceed to move straight on without limit in the direction toward which the greater weight tends, entirely contrary to experience. Therefore the necessary conclusion is that the weights of the parts are in equilibrium—that is, that the action of gravity is mutual and equal in both directions.

The weights of bodies equally distant from the center of the earth are as the quantities of matter in the bodies. This is gathered from the equal acceleration of all bodies falling from rest by the force of their weights; for the forces by which unequal bodies are equally accelerated must be proportional to the quantities of matter to be moved. Now, that all falling bodies universally are equally accelerated is evident from this, that in the vacuum produced by Boyle’s air pump (that is, with the resistance of the air removed), they describe, in falling, equal spaces in equal times, and this is proved more exactly by experiments with pendulums.

The attractive forces of bodies, at equal distances, are as the quantities of matter in the bodies. For, since bodies gravitate toward the earth, and the earth in turn gravitates toward the bodies, with equal moments [i.e., strengths or powers], the weight of the earth toward each body, or the force by which the body attracts the earth, will be equal to the weight of the body toward the earth. But, as mentioned above, this weight is as the quantity of matter in the body, and so the force by which each body attracts the earth, or the absolute force of the body, will be as its quantity of matter.

Therefore the attractive force of entire bodies arises and is compounded from the attractive force of the parts, since (as has been shown), when the amount of matter is increased or diminished, its force is proportionally increased or diminished. Therefore the action of the earth must result from the combined actions of its parts; hence all terrestrial bodies must attract one another by absolute forces that are proportional to the attracting matter. This is the nature of gravity on earth; let us now see what it is in the heavens.

Every body perseveres in its state either of being at rest or of moving uniformly straight forward, except insofar as it is compelled by impressed forces to change that state: this is a law of nature accepted by all philosophers. It follows that bodies that move in curves, and so continually deviate from straight lines tangent to their orbits, are kept in a curvilinear path by some continually acting force. Therefore, for the planets to revolve in curved orbits, there will necessarily be some force by whose repeated actions they are unceasingly deflected from the tangents.

Now, it is reasonable to accept something that can be found by mathematics and proved with the greatest certainty: namely, that all bodies moving in some curved line described in a plane, which by a radius drawn to a point (either at rest or moving in any way) describe areas about that point proportional to the times, are urged by forces that tend toward that same point. Therefore, since it is agreed among astronomers that the primary planets describe areas around the sun proportional to the times, as do the secondary planets around their own primary planets, it follows that the force by which they are continually pulled away from rectilinear tangents and are compelled to revolve in curvilinear orbits is directed toward the bodies that are situated in the centers of the orbits. Therefore this force can, appropriately, be called centripetal with respect to the revolving body, and attractive with respect to the central body, from whatever cause it may in the end be imagined to arise.

The following rules must also be accepted and are mathematically demonstrated. If several bodies revolve with uniform motion in concentric circles, and if the squares of the periodic times are as the cubes of the distances from the common center, then the centripetal forces of the revolving bodies will be inversely as the squares of the distances. Again, if the bodies revolve in orbits that are very nearly circles, and if the apsides of the orbits are at rest, then the centripetal forces of the revolving bodies will be inversely as the squares of the distances. Astronomers agree that one or the other case holds for all the planets, [both primary and secondary]. Therefore the centripetal forces of all the planets are inversely as the squares of the distances from the centers of the orbits. If anyone objects that the apsides of the planets, especially the apsides of the moon, are not completely at rest but are carried progressively forward [or in consequentia] with a slow motion, it can be answered that even if we grant that this very slow motion arises from a slight deviation of the centripetal force from the proportion of the inverse square, this difference can be found by mathematical computation and is quite insensible. For the ratio of the moon’s centripetal force itself, which should deviate most of all from the square, will indeed exceed the square by a very little, but it will be about sixty times closer to it than to the cube. But our answer to the objection will be truer if we say that this progression of the apsides does not arise from a deviation from the proportion of the [inverse] square but from another and entirely different cause, as is admirably shown in Newton’s philosophy. As a result, the centripetal forces by which the primary planets tend toward the sun, and the secondary planets toward their primaries, must be exactly as the squares of the distances inversely.

From what has been said up to this point, it is clear that the planets are kept in their orbits by some force continually acting upon them, that this force is always directed toward the centers of the orbits, and that its efficacy is increased in approaching the center and decreased in receding from the center—actually increased in the same proportion in which the square of the distance is decreased, and decreased in the same proportion in which the square of the distance is increased. Let us now, by comparing the centripetal forces of the planets and the force of gravity, see whether or not they might be of the same kind. They will be of the same kind if the same laws and the same attributes are found in both. Let us first, therefore, consider the centripetal force of the moon, which is closest to us.

When bodies are let fall from rest, and are acted on by any forces whatever, the rectilinear spaces described in a given time at the very beginning of the motion are proportional to the forces themselves; this of course follows from mathematical reasoning. Therefore the centripetal force of the moon revolving in its orbit will be to the force of gravity on the earth’s surface as the space that the moon would describe in a minimally small time in descending toward the earth by its centripetal force—supposing it to be deprived of all circular motion—is to the space that a heavy body describes in the same minimally small time in the vicinity of the earth, in falling by the force of its own gravity. The first of these spaces is equal to the versed sine of the arc described by the moon during the same time, inasmuch as this versed sine measures the departure of the moon from the tangent caused by centripetal force and thus can be calculated if the moon’s periodic time and its distance from the center of the earth are both given. The second space is found by experiments with pendulums, as Huygens has shown. Therefore, the result of the calculation will be that the first space is to the second space, or the centripetal force of the moon revolving in its orbit is to the force of gravity on the surface of the earth, as the square of the semidiameter of the earth is to the square of the semidiameter of the orbit. By what is shown above, the same ratio holds for the centripetal force of the moon revolving in its orbit and the centripetal force of the moon if it were near the earth’s surface. Therefore this centripetal force near the earth’s surface is equal to the force of gravity. They are not, therefore, different forces, but one and the same; for if they were different, bodies acted on by both forces together would fall to the earth twice as fast as from the force of gravity alone. And therefore it is clear that this centripetal force by which the moon is continually either drawn or impelled from the tangent and is kept in its orbit is the very force of terrestrial gravity extending as far as the moon. And indeed it is reasonable for this force to extend itself to enormous distances, since one can observe no sensible diminution of it even on the highest peaks of mountains. Therefore the moon gravitates toward the earth. Further, by mutual action, the earth in turn gravitates equally toward the moon, a fact which is abundantly confirmed in this philosophy, when we deal with the tide of the sea and the precession of the equinoxes, both of which arise from the action of both the moon and the sun upon the earth. Hence finally we learn also by what law the force of gravity decreases at greater distances from the earth. For since gravity is not different from the moon’s centripetal force, which is inversely proportional to the square of the distance, gravity will also be diminished in the same ratio.

Let us now proceed to the other planets. The revolutions of the primary planets about the sun and of the secondary planets about Jupiter and Saturn are phenomena of the same kind as the revolution of the moon about the earth; furthermore, it has been demonstrated that the centripetal forces of the primary planets are directed toward the center of the sun, and those of the secondary planets toward the centers of Jupiter and of Saturn, just as the moon’s centripetal force is directed toward the center of the earth; and, additionally, all these forces are inversely as the squares of the distances from the centers, just as the force of the moon is inversely as the square of the distance from the earth. Therefore it must be concluded that all of these primary and secondary planets have the same nature. Hence, as the moon gravitates toward the earth, and the earth in turn gravitates toward the moon, so also all the secondary planets will gravitate toward their primaries, and the primaries in turn toward the secondaries, and also all the primary planets will gravitate toward the sun, and the sun in turn toward the primary planets.

Therefore the sun gravitates toward all the primary and secondary planets, and all these toward the sun. For the secondary planets, while accompanying their primaries, revolve with them around the sun. By the same argument, therefore, both kinds of planets gravitate toward the sun, and the sun toward them. Additionally, that the secondary planets gravitate toward the sun is also abundantly clear from the inequalities of the moon, concerning which a most exact theory is presented with marvelous sagacity in the third book of this work.

The motion of the comets shows very clearly that the attractive force of the sun is propagated in every direction to enormous distances and is diffused to every part of the surrounding space, since the comets, starting out from immense distances, come into the vicinity of the sun and sometimes approach so very close to it that in their perihelia they all seemingly touch its globe. Astronomers until now have tried in vain to find the theory of these comets; now at last, in our time, our most illustrious author has succeeded in finding the theory and has demonstrated it with the greatest certainty from observations. It is therefore evident that the comets move in conic sections having their foci in the center of the sun and by radii drawn to the sun describe areas proportional to the times. From these phenomena it is manifest and it is mathematically proved that the forces by which the comets are kept in their orbits are directed toward the sun and are inversely as the squares of their distances from its center. Thus the comets gravitate toward the sun; and so the attractive force of the sun reaches not only to the bodies of the planets, which are at fixed distances and in nearly the same plane, but also to the comets, which are in the most diverse regions of the heavens and at the most diverse distances. It is the nature of gravitating bodies, therefore, that they propagate their forces at all distances to all other gravitating bodies. From this it follows that all planets and comets universally attract one another and are heavy toward one another—which is also confirmed by the perturbation of Jupiter and Saturn, known to astronomers and arising from the actions of these planets upon each other; it is also confirmed by the very slow motion of the apsides that was mentioned above and that arises from an entirely similar cause.

We have at last reached the point where it must be acknowledged that the earth and the sun and all the celestial bodies that accompany the sun attract one another. Therefore every least particle of each of them will have its own attractive force in proportion to the quantity of matter, as was shown above for terrestrial bodies. And at different distances their forces will also be in the squared ratio of the distances inversely; for it is mathematically demonstrated that particles attracting by this law must constitute globes attracting by the same law.

The preceding conclusions are based upon an axiom which is accepted by every philosopher, namely, that effects of the same kind—that is, effects whose known properties are the same—have the same causes, and their properties which are not yet known are also the same. For if gravity is the cause of the fall of a stone in Europe, who can doubt that in America the cause of the fall is the same? If gravity is mutual between a stone and the earth in Europe, who will deny that it is mutual in America? If in Europe the attractive force of the stone and the earth is compounded of the attractive forces of the parts, who will deny that in America the force is similarly compounded? If in Europe the attraction of the earth is propagated to all kinds of bodies and to all distances, why should we not say that in America it is propagated in the same way? All philosophy is based on this rule, inasmuch as, if it is taken away, there is then nothing we can affirm about things universally. The constitution of individual things can be found by observations and experiments; and proceeding from there, it is only by this rule that we make judgments about the nature of things universally.

Now, since all terrestrial and celestial bodies on which we can make experiments or observations are heavy, it must be acknowledged without exception that gravity belongs to all bodies universally. And just as we must not conceive of bodies that are not extended, mobile, and impenetrable, so we should not conceive of any that are not heavy. The extension, mobility, and impenetrability of bodies are known only through experiments; it is in exactly the same way that the gravity of bodies is known. All bodies for which we have observations are extended and mobile and impenetrable; and from this we conclude that all bodies universally are extended and mobile and impenetrable, even those for which we do not have observations. Thus all bodies for which we have observations are heavy; and from this we conclude that all bodies universally are heavy, even those for which we do not have observations. If anyone were to say that the bodies of the fixed stars are not heavy, since their gravity has not yet been observed, then by the same argument one would be able to say that they are neither extended nor mobile nor impenetrable, since these properties of the fixed stars have not yet been observed. Need I go on? Among the primary qualities of all bodies universally, either gravity will have a place, or extension, mobility, and impenetrability will not. And the nature of things either will be correctly explained by the gravity of bodies or will not be correctly explained by the extension, mobility, and impenetrability of bodies.

I can hear some people disagreeing with this conclusion and muttering something or other about occult qualities. They are always prattling on and on to the effect that gravity is something occult, and that occult causes are to be banished completely from philosophy. But it is easy to answer them: occult causes are not those causes whose existence is very clearly demonstrated by observations, but only those whose existence is occult, imagined, and not yet proved. Therefore gravity is not an occult cause of celestial motions, since it has been shown from phenomena that this force really exists. Rather, occult causes are the refuge of those who assign the governing of these motions to some sort of vortices of a certain matter utterly fictitious and completely imperceptible to the senses.

But will gravity be called an occult cause and be cast out of natural philosophy on the grounds that the cause of gravity itself is occult and not yet found? Let those who so believe take care lest they believe in an absurdity that, in the end, may overthrow the foundations of all philosophy. For causes generally proceed in a continuous chain from compound to more simple; when you reach the simplest cause, you will not be able to proceed any further. Therefore no mechanical explanation can be given for the simplest cause; for if it could, the cause would not yet be the simplest. Will you accordingly call these simplest causes occult, and banish them? But at the same time the causes most immediately depending on them, and the causes that in turn depend on these causes, will also be banished, until philosophy is emptied and thoroughly purged of all causes.

Some say that gravity is preternatural and call it a perpetual miracle. Therefore they hold that it should be rejected, since preternatural causes have no place in physics. It is hardly worth spending time on demolishing this utterly absurd objection, which of itself undermines all of philosophy. For either they will say that gravity is not a property of all bodies—which cannot be maintained—or they will assert that gravity is preternatural on the grounds that it does not arise from other affections of bodies and thus not from mechanical causes. Certainly there are primary affections of bodies, and since they are primary, they do not depend on others. Therefore let them consider whether or not all these are equally preternatural, and so equally to be rejected, and let them consider what philosophy will then be like.

There are some who do not like all this celestial physics just because it seems to be in conflict with the doctrines of Descartes and seems scarcely capable of being reconciled with these doctrines. They are free to enjoy their own opinion, but they ought to act fairly and not deny to others the same liberty that they demand for themselves. Therefore, we should be allowed to adhere to the Newtonian philosophy, which we consider truer, and to prefer causes proved by phenomena to causes imagined and not yet proved. It is the province of true philosophy to derive the natures of things from causes that truly exist, and to seek those laws by which the supreme artificer willed to establish this most beautiful order of the world, not those laws by which he could have, had it so pleased him. For it is in accord with reason that the same effect can arise from several causes somewhat different from one another; but the true cause will be the one from which the effect truly and actually does arise, while the rest have no place in true philosophy. In mechanical clocks one and the same motion of the hour hand can arise from the action of a suspended weight or an internal spring. But if the clock under discussion is really activated by a weight, then anyone will be laughed at if he imagines a spring and on such a premature hypothesis undertakes to explain the motion of the hour hand; for he ought to have examined the internal workings of the machine more thoroughly, in order to ascertain the true principle of the motion in question. The same judgment or something like it should be passed on those philosophers who have held that the heavens are filled with a certain most subtle matter, which is endlessly moved in vortices. For even if these philosophers could account for the phenomena with the greatest exactness on the basis of their hypotheses, still they cannot be said to have given us a true philosophy and to have found the true causes of the celestial motions until they have demonstrated either that these causes really do exist or at least that others do not exist. Therefore if it can be shown that the attraction of all bodies universally has a true place in the nature of things, and if it further can be shown how all the celestial motions are solved by that attraction, then it would be an empty and ridiculous objection if anyone said that those motions should be explained by vortices, even if we gave our fullest assent to the possibility of such an explanation. But we do not give our assent; for the phenomena can by no means be explained by vortices, as our author fully proves with the clearest arguments. It follows that those who devote their fruitless labor to patching up a most absurd figment of their imagination and embroidering it further with new fabrications must be overly indulging their fantasies.

If the bodies of the planets and the comets are carried around the sun by vortices, the bodies carried around must move with the same velocity and in the same direction as the immediately surrounding parts of the vortices, and must have the same density or the same force of inertia in proportion to the bulk of the matter. But it is certain that planets and comets, while they are in the same regions of the heavens, move with a variety of velocities and directions. Therefore it necessarily follows that those parts of the celestial fluid that are at the same distances from the sun revolve in the same time in different directions with different velocities; for there will be need of one direction and velocity to permit the planets to move through the heavens, and another for the comets. Since this cannot be accounted for, either it will have to be confessed that all the celestial bodies are not carried by the matter of a vortex, or it will have to be said that their motions are to be derived not from one and the same vortex, but from more than one, differing from one another and going through the same space surrounding the sun.

If it is supposed that several vortices are contained in the same space and penetrate one another and revolve with different motions, then—since these motions must conform to the motions of the bodies being carried around, motions highly regular in conic sections that are sometimes extremely eccentric and sometimes very nearly circular—it will be right to ask how it can happen that these same vortices keep their integrity without being in the least perturbed through so many centuries by the interactions of their matter. Surely, if these imaginary motions are more complex and more difficult to explain than the true motions of the planets and comets, I think it pointless to admit them into natural philosophy; for every cause must be simpler than its effect. Granted the freedom to invent any fiction, let someone assert that all the planets and comets are surrounded by atmospheres, as our earth is, a hypothesis that will certainly seem more reasonable than the hypothesis of vortices. Let him then assert that these atmospheres, of their own nature, move around the sun and describe conic sections, a motion that can surely be much more easily conceived than the similar motion of vortices penetrating one another. Finally, let him maintain that it must be believed that the planets themselves and the comets are carried around the sun by their atmospheres, and let him celebrate his triumph for having found the causes of the celestial motions. Anyone who thinks that this fiction should be rejected will also reject the other one; for the hypothesis of atmospheres and the hypothesis of vortices are as alike as two peas in a pod.

Galileo showed that when a stone is projected and moves in a parabola, its deflection from a rectilinear path arises from the gravity of the stone toward the earth, that is, from an occult quality. Nevertheless it can happen that some other philosopher, even more clever, may contrive another cause. He will accordingly imagine that a certain subtle matter, which is not perceived by sight or by touch or by any of the senses, is found in the regions that are most immediately contiguous to the surface of the earth. He will argue, moreover, that this matter is carried in different directions by various and—for the most part—contrary motions and that it describes parabolic curves. Finally he will beautifully show how the stone is deflected and will earn the applause of the crowd. The stone, says he, floats in that subtle fluid and, by following the course of that fluid, cannot but describe the same path. But the fluid moves in parabolic curves; therefore the stone must move in a parabola. Who will not now marvel at the most acute genius of this philosopher, brilliantly deducing the phenomena of nature from mechanical causes [i.e., matter and motion]—at a level comprehensible even to ordinary people! Who indeed will not jeer at that poor Galileo, who undertook by a great mathematical effort once more to bring back occult qualities, happily excluded from philosophy! But I am ashamed to waste any more time on such trifles.

It all finally comes down to this: the number of comets is huge; their motions are highly regular and observe the same laws as the motions of the planets. They move in conic orbits; these orbits are very, very eccentric. Comets go everywhere into all parts of the heavens and pass very freely through the regions of the planets, often contrary to the order of the signs. These phenomena are confirmed with the greatest certainty by astronomical observations and cannot be explained by vortices. Further, these phenomena are even inconsistent with planetary vortices. There will be no room at all for the motions of the comets unless that imaginary matter is completely removed from the heavens.

For if the planets are carried around the sun by vortices, those parts of the vortices that most immediately surround each planet will be of the same density as the planet, as has been said above. Therefore all the matter that is contiguous to the perimeter of the earth’s orbit will have the same density as the earth, while all the matter that lies between the earth’s orbit and the orbit of Saturn will have either an equal or a greater density. For, in order that the constitution of a vortex may be able to last, the less dense parts must occupy the center, and the more dense parts must be further away from the center. For since the periodic times of the planets are as the 3/2 powers of the distances from the sun, the periods of the parts of the vortex should keep the same ratio. It follows that the centrifugal forces of these parts will be inversely as the squares of the distances. Therefore those parts that are at a greater distance from the center strive to recede from it by a smaller force; accordingly, if they should be less dense, it would be necessary for them to yield to the greater force by which the parts nearer to the center endeavor to ascend. Therefore the denser parts will ascend, the less dense will descend, and a mutual exchange of places will occur, until the fluid matter of the whole vortex has been arranged in such order that it can now rest in equilibrium [i.e., its parts are completely at rest with respect to one another or no longer have any motion of ascent or descent]. If two fluids of different density are contained in the same vessel, certainly it will happen that the fluid whose density is greater will go to the lowest place under the action of its greater force of gravity, and by similar reasoning it must be concluded that the denser parts of the vortex will go to the highest place under the action of their greater centrifugal force. Therefore the whole part of the vortex that lies outside the earth’s orbit (much the greatest part) will have a density and so a force of inertia (proportional to the quantity of matter) that will not be smaller than the density and force of inertia of the earth. From this will arise a huge and very noticeable resistance to the comets as they pass through, not to say a resistance that rightly seems to be able to put a complete stop to their motion and absorb it entirely. It is however clear from the altogether regular motion of comets that they encounter no resistance that can be in the least perceived, and thus that they do not come upon any matter that has any force of resistance, or accordingly that has any density or force of inertia. For the resistance of mediums arises either from the inertia of fluid matter or from its friction.a That which arises from friction is extremely slight and indeed can scarcely be observed in commonly known fluids, unless they are very tenacious like oil and honey. The resistance that is encountered in air, water, quicksilver, and nontenacious fluids of this sort is almost wholly of the first kind and cannot be decreased in subtlety by any further degree, if the fluid’s density or force of inertia—to which this resistance is always proportional—remains the same. This is most clearly demonstrated by our author in his brilliant theory of the resistance of fluids, which in this second edition is presented in a somewhat more accurate manner and is more fully confirmed by experiments with falling bodies.

As bodies move forward, they gradually communicate their motion to a surrounding fluid, and by communicating their motion lose it, and by losing it are retarded. Therefore the retardation is proportional to the motion so communicated, and the motion communicated (where the velocity of the moving body is given) is as the density of the fluid; therefore the retardation or resistance will also be as the density of the fluid and cannot be removed by any means unless the fluid, returning to the back of the body, restores the lost motion. But this cannot be the case unless the force of the fluid on the rear of the body is equal to the force the body exerts on the fluid in front, that is, unless the relative velocity with which the fluid pushes the body from behind is equal to the velocity with which the body pushes the fluid, that is, unless the absolute velocity of the returning fluid is twice as great as the absolute velocity of the fluid pushed forward, which cannot happen. Therefore there is no way in which the resistance of fluids that arises from their density and force of inertia can be taken away. And so it must be concluded that the celestial fluid has no force of inertia, since it has no force of resistance; it has no force by which motion may be communicated, since it has no force of inertia; it has no force by which any change may be introduced into one or more bodies, since it has no force by which motion may be communicated; it has no efficacy at all, since it has no faculty to introduce any change. Surely, therefore, this hypothesis, plainly lacking in any foundation and not even marginally useful to explain the nature of things, may well be called utterly absurd and wholly unworthy of a philosopher. Those who hold that the heavens are filled with fluid matter, but suppose this matter to have no inertia, are saying there is no vacuum but in fact are assuming there is one. For, since there is no way to distinguish a fluid matter of this sort from empty space, the whole argument comes down to the names of things and not their natures. But if anyone is so devoted to matter that he will in no way admit a space void of bodies, let us see where this will ultimately lead him.

For such people will say that this constitution of the universe as everywhere full, which is how they imagine it, has arisen from the will of God, so that a very subtle aether pervading and filling all things would be there to facilitate the operations of nature; this cannot be maintained, however, since it has already been shown from the phenomena of comets that this aether has no efficacy. Or they will say that this constitution has arisen from the will of God for some unknown purpose, which ought not to be said either, since a different constitution of the universe could equally well be established by the same argument. Or finally they will say that it has not arisen from the will of God but from some necessity of nature. And so at last they must sink to the lowest depths of degradation, where they have the fantasy that all things are governed by fate and not by providence, that matter has existed always and everywhere of its own necessity and is infinite and eternal. On this supposition, matter will also be uniform everywhere, for variety of forms is entirely inconsistent with necessity. Matter will also be without motion; for if by necessity matter moves in some definite direction with some definite velocity, by a like necessity it will move in a different direction with a different velocity; but it cannot move in different directions with different velocities; therefore it must be without motion. Surely, this world—so beautifully diversified in its forms and motions—could not have arisen except from the perfectly free will of God, who provides and governs all things.

From this source, then, have all the laws that are called laws of nature come, in which many traces of the highest wisdom and counsel certainly appear, but no traces of necessity. Accordingly we should not seek these laws by using untrustworthy conjectures, but learn them by observing and experimenting. He who is confident that he can truly find the principles of physics, and the laws of things, by relying only on the force of his mind and the internal light of his reason should maintain either that the world has existed from necessity and follows the said laws from the same necessity, or that although the order of nature was constituted by the will of God, nevertheless a creature as small and insignificant as he is has a clear understanding of the way things should be. All sound and true philosophy is based on phenomena, which may lead us—however unwilling and reluctant—to principles in which the best counsel and highest dominion of an all-wise and all-powerful being are most clearly discerned; these principles will not be rejected because certain men may perhaps not like them. These men may call the things that they dislike either miracles or occult qualities, but names maliciously given are not to be blamed on the things themselves, unless these men are willing to confess at last that philosophy should be based on atheism. Philosophy must not be overthrown for their sake, since the order of things refuses to be changed.

Therefore honest and fair judges will approve the best method of natural philosophy, which is based on experiments and observations. It need scarcely be said that this way of philosophizing has been illumined and dignified by our illustrious author’s well-known book; his tremendous genius, enodating each of the most difficult problems and reaching out beyond the accepted limits of the human, is justly admired and esteemed by all who are more than superficially versed in these matters. Having unlocked the gates, therefore, he has opened our way to the most beautiful mysteries of nature. He has finally so clearly revealed a most elegant structure of the system of the world for our further scrutiny that even were King Alfonso himself to come to life again, he would not find it wanting either in simplicity or in grace of harmony. And hence it is now possible to have a closer view of the majesty of nature, to enjoy the sweetest contemplation, and to worship and venerate more zealously the maker and lord of all; and this is by far the greatest fruit of philosophy. He must be blind who does not at once see, from the best and wisest structures of things, the infinite wisdom and goodness of their almighty creator; and he must be mad who refuses to acknowledge them.

Therefore Newton’s excellent treatise will stand as a mighty fortress against the attacks of atheists; nowhere else will you find more effective ammunition against that impious crowd. This was understood long ago, and was first splendidly demonstrated in learned discourses in English and in Latin, by a man of universal learning and at the same time an outstanding patron of the arts, Richard Bentley, a great ornament of his time and of our academy, the worthy and upright master of our Trinity College. I must confess that I am indebted to him on many grounds; you as well, kind reader, will not deny him due thanks. For, as a long-time intimate friend of our renowned author (he considers being celebrated by posterity for this friendship to be of no less value than becoming famous for his own writings, which are the delight of the learned world), he worked simultaneously for the public recognition of his friend and for the advancement of the sciences. Therefore, since the available copies of the first edition were extremely rare and very expensive, he tried with persistent demands to persuade Newton (who is distinguished as much by modesty as by the highest learning) and finally—almost scolding him— prevailed upon Newton to allow him to get out this new edition, under his auspices and at his own expense, perfected throughout and also enriched with significant additions. He authorized me to undertake the not unpleasant duty of seeing to it that all this was done as correctly as possible.

Cambridge, 12 May 1713 Roger Cotes,
Fellow of Trinity College,
Plumian Professor of Astronomy and Experimental Philosophy