AN OLD JOKE and over-used keynote riff among education innovators is that if Rip Van Winkle awoke today from his hundred-year nap, he would be befuddled by the new world. He might wander across town marveling at people’s constant staring, swiping, and tapping into mobile phones. He might balk to see cars driving themselves and stores with automated checkout lines. And when he finally made his way into a school, Rip would heave a great sigh of relief that schools are just as he remembered (insert uproarious laughter here).
This joke overemphasizes the stability of schooling, but it contains an important kernel of truth: schools are conservative institutions in society. People tend to teach how they were taught, and new technologies are far more likely to be bent to fit into existing systems than they are to lead to major reorganizations.
When faced with integrating new technologies, most educators take an approach constrained by a combination of an anxiety about trying new things, a desire to make the best possible use of students’ time, and the stress of the demanding workloads required just to keep classes running. It is only with support, professional learning opportunities, collaborative planning time, and other system-level resources that most educators can become comfortable enough to try new approaches to teaching and learning with technology.
Even when teachers have adequate support for technology integration, research has shown that adoption of new technologies is a process that usually begins with using new technologies in old ways. In the 1980s, Judith Sandholtz and a team of researchers conducted the Apple Classrooms of Tomorrow project, an initiative to place cutting-edge personal computers like the Apple IIe and some of the first wired computer networks into K–12 classrooms. She found that teachers needed to proceed through a developmental trajectory of stages: entry, adoption, adaptation, appropriation, and invention. At early stages, teachers replicated existing practices with technology, and over time, teachers developed approaches to teaching and learning that would be impossible without the new technologies. When introduced to new technology, most teachers start at the early phases, and many do not progress much beyond that. This isn’t necessarily a criticism, as great teaching can happen with or without technology, but it is an empirical observation. Developing the capacity to integrate new technologies in ways that lead to meaningful changes in teaching and learning takes time, opportunities for professional development, coaching, and peer support.1
Many learners approach education technology with the same conservativism that we find with teachers. While working for HarvardX in the first few years of MOOC development, I was struck by how common it was for a subset of learners to vociferously critique anything that didn’t look like a “standard” MOOC. When microbiology professor David Cox created a MOOC with animations and simulations for learning about the human brain, learners dismissed it as non-serious compared to more lecture- and test-based MOOCs. In 2014, George Siemens led the development of an edX MOOC about learning analytics called Data Analytics and Learning, or DALMOOC, which attempted to include components of both instructionist and connectivist MOOCs. The edX portion of the MOOC had lecture videos and autograded items, and there was a parallel online community that functioned more like a cMOOC, with social features and more open-ended learning. In the edX forums, several learners railed against the cMOOC portion, even though it was optional. In a 2014 interview, Siemens explained, “If you take a MOOC today, you basically have the same structure as you had in 2011 when Coursera and edX were introduced—students have a certain set of expectations. They want that format, it seems.” In three short years, learner expectations around xMOOCs had solidified around a conservative notion of what MOOCs should be.2
Designers of popular consumer technologies also often assume some conservativism in their users. One of the most widely recognized icons on a computer screen is the “trash” or “delete” icon, which often looks like a wastepaper basket. This is a classic example of a user-experience design strategy called skeuomorphism, which involves making digital tools look like their analog components. Early versions of Notes, Apple’s iOS notebook app, were made to look like a leather-bound legal pad; the pages were yellow and had straight lines across them, and a leather image ran down the left edge. These markers of familiarity were included to help people imagine how they might use a new technology. But that imagination is constrained by the presence of visual markers of an older technology, and that constraint is imposed by design; the invitation from the leather-bound Notes app was to continue taking notes as you had in the past, not to imagine new ways that a digital notebook might lead to more interesting, useful, or effective habits of study or practice. Skeuomorphism gives users hints about what to do at the cost of limiting their imaginations about what new things might be possible with a new technology.3
Skeuomorphism is a useful metaphor for education technology; most new tools are designed to harken back to some kind of analog antecedent in typical classroom practice. Watch five seconds of a Khan Academy video, and you will know that you are watching a lecture. Peek at one of their problem sets, and you’ll recognize the questions and response boxes as a digital worksheet. The stars and points and bing noises that accompany correct answers are as familiar as the gold star that your first grade teacher might have affixed to the top of a homework sheet.
One of the most widely used education technology products in the world is Quizlet, an app for creating decks of online flash cards for practice, testing, and sharing. Quizlet has over 50 million monthly users around the world and claims to engage 50 percent of all K–12 students in the United States (there are over 50 million students each year in US K–12 schools). If government leaders convened a panel of global experts to discuss the most urgent needs in our education system, it is hard to imagine that “a dearth of flash cards” would rise to the top of the list. Managing a global transition from index cards to digital flash cards is probably not the most compelling strategy for education reform. Quizlet may have successfully engaged half of American students with a single app, but there is no reason to believe that this technology adoption has led to substantial improvements in national learning. But digital flash cards offer some efficiency gains over paper flash cards, they fit neatly into existing educational systems, and they can be easily used and adopted by a wide range of teachers and learners.4
This, then, is one side of what I call the curse of the familiar. Easily adopted technologies will be those that replicate existing classroom practices, but digitizing what teachers and students already do is unlikely to lead to substantial improvements in schools. Whether students are testing themselves on 1 million, 1 billion, or 1 trillion Quizlet study sets per year, online flash cards are not going to profoundly change the experience of schooling and learning.
The flip side of the curse of the familiar coin is that when edtech developers do create novel learning environments that offer the promise of substantially changing learners’ experiences, many learners will find these environments confusing and teachers will find them difficult to adopt. I discussed this dynamic in several earlier chapters. Recall that when many learners encountered the connectivist MOOCs developed by Canadian educators, they were baffled by the decentralized structure, the new aggregation technologies, the freedoms afforded to learners, and the minimally specified ends of the exercise. From figuring out how to sign up and participate to making sense of the point of it all, learners had to put substantial effort into meta-learning about how to participate in a new learning environment. This was precisely the point of connectivist MOOCs, but it was also their stumbling block.
Efforts to adopt the Scratch programming environment in schools provide another example of the curse of the familiar. Developers and advocates hope that Scratch can generate opportunities for students and learners to develop computational creativity through a pedagogy that emphasizes projects, passion, partners, and play (recalling Scratch founder Mitch Resnick’s description of the project in Lifelong Kindergarten). In the ideal use cases of Scratch, learners should have a high degree of autonomy in pursuing projects of interest, and as they develop personally relevant animations, games, programs, and resources, they’ll encounter moments of difficulty or opportunities for learning. To respond to those challenges, Scratchers would ideally search their online and local communities, including teachers, to find learning resources. For some Scratchers—a large number but a relatively small proportion—Scratch provides precisely the motivation to pursue these investigative pathways. But for many students who open Scratch, the open-ended learning environment and possibilities for collaboration are confusing or overwhelming. It is not clear what to do with coding blocks or how they might work; it is not obvious how one might go from the blank canvas in Scratch to the sophisticated animations and games that experienced programmers create. Many people who sign up for Scratch start a project then quit soon after. As of 2019, Scratch had about 40 million registered users and about 40 million Scratch projects. The typical engagement with Scratch is a one-off.
The dilemma that Resnick and colleagues face as Scratch is widely adopted in schools is that a variety of typical school structures are inimical to the pedagogical philosophy behind Scratch. Scratch values remixing of projects so that new ideas can build upon and reimagine older ones, and schools typically insist on clear, individual provenance of work to allow for assigning grades to individual students. In schools, remixing is cheating. Scratch values open-ended exploration and discovery, but class periods have strict time limits, and teachers often ask students to complete particular milestones at particular time points in order to assign grades, credit, or other markers of compliance. Scratch is designed as the technology avatar and vehicle for constructionist pedagogy, and schools are often successful at neutering those elements of Scratch so that it can be implemented in learning environments emphasizing teacher control and student compliance with specific routines or instructions.5
The curse of the familiar poses a two-sided dilemma: reproduce the ordinary and get adoption but not change, or attempt to do something different and either confuse your intended audience or have them take your novel approach and transform it into something conventional. Venture-backed education technology efforts over the last decade have overwhelmingly chosen the former.
Over the past ten years, the involvement of venture capital in education technology has grown substantially, with millions of dollars now invested annually in new startups from Boston to Beijing and a global landscape of edtech incubators, coworking spaces where startups can find comradery and networks of support. Venture capital firms purchase a portion of equity in new startups in exchange for an infusion of cash that startups can use for hiring and operations.
For venture-funded edtech startups, one of the core goals is to amass as many users as possible as quickly as possible. A growing install base attracts additional venture capital funding and is supposed to provide the basis of value that would attract an acquisition (where a larger edtech company purchases a smaller new entrant) or investors for an initial public offering. Often, growth is prioritized over revenue generation in startups on the theory that if a company can offer a service to a large enough group of consumers, then revenue generation will sort itself out down the road.
The way to grow as fast as possible is to create something that people are already familiar with. In 2018, education technology historian and critic Audrey Watters compiled a list of eleven edtech companies with the largest investments; seven of them were focused on tutoring for test prep. The other four companies developed administrative software for schools, intelligent tutors for K–8 math, and tutoring for music lessons and English language learning. Venture capital firms are structurally incentivized to be more concerned with getting a return on their investment than in supporting products that substantially improve education. The conservatism of educational systems and the conservativism of financial systems reinforce one another. It is perhaps no surprise that some of the most interesting education technology efforts emerge from universities—connectivist MOOCs from Canadian universities and Scratch from the MIT Media Lab—where there is an unusual combination of available funding, intellectual freedom, and long time horizons. If widespread adoption is conditional on familiarity, then it is hard to imagine truly novel approaches from teaching and learning emerging from funding structures that are concerned with maximizing adoption and return on investment.6
The curse of the familiar emerges from trying to use technology alone to change schooling. Schools, with their innate complexity and conservatism, domesticate new technologies into existing routines rather than being disrupted by new technologies. For anyone hoping to substantially change teaching and learning through technology, the most promising way of passing through these thickets is to prioritize systems change alongside technology adoption. And the most important stakeholders in educational change are teachers. What’s needed to encourage the design, transmission, and adoption of new ideas is a large, thriving community of teachers who are committed to progressive pedagogical change and designers who are excited about seeing this community as partners.
Peer-to-peer connections among teachers are crucial to transmitting new ideas in schools. When K–12 teachers and faculty in higher education are surveyed or interviewed about the process of pedagogical change, they commonly respond that the number one influence over their pedagogy is other teachers. Principals, state requirements, and other factors can heavily influence what educators teach and their curriculum choices, but peers play the most powerful role in shaping how they teach. It is people that scale new pedagogical practices: educators engaging one another in conversations about teaching and learning, communities forming to understand and advocate for new ideas, and individuals and groups of individuals practicing the time-consuming, patience-testing work of changing institutional cultures and structures. Changing teacher behavior at scale requires nurturing widely distributed networks of peer learning among educators.7
Technology can help in this process, in the sense that new technologies can be provocative ways of starting new conversations. When schools adopt the Scratch programming language and online community into a computer science curriculum, an entry point is created for educators to discuss the many purposes of computing and how technologies can spark and support student creativity. Perhaps my main motivation for spending the last decade in education technology is that I have found educators to be genuinely more willing to engage in open discussions of pedagogy when encountering new technologies. But even if technology helps as a catalyst, it cannot replace the hard work of reshaping educational systems to take advantage of the potential of new technologies.
As we have seen in the first part of this book, technology evangelists often use the language of disruptive innovation to tell stories about how old systems will give way to new technologies. In reality, it is community, not technology, that offers the best chance of changing practice in schools. Two organizations are exemplars of groups trying to drive meaningful change in pedagogy through conversations about technology: the Lifelong Kindergarten group and their Scratch project and the developers of the Desmos online graphing calculator.
While Scratch started primarily as a resource for after-school programs and for kids during their leisure time, the more recent growth of Scratch has been driven by school-based adoption. Mitch Resnick, Natalie Rusk, and their colleagues in the Lifelong Kindergarten lab are proud of the widespread adoption of Scratch, but that is not their only goal; they are constantly working to help educators not only to use Scratch, but also to embrace its underlying ideas. In a sense, the adoption of Scratch in schools has outpaced the adoption of creative, constructionist pedagogy, and the Lifelong Kindergarten team is working to help bridge the gap.
One set of strategies that the Scratch team has pursued is to provide more structure as teachers and students are introduced to Scratch. Seymour Papert, who codeveloped the Logo programming language that pre-dated Scratch, argued that good learning designs have low floors and high ceilings. They should be easy to start working with while allowing for more complex engagement over time. Resnick later added “wide walls” to the design specifications, noting that good learning designs allow for a wide variety of creations that align with student interests. The Scratch team is currently exploring the development of more “narrow foyers”—places with constraints and scaffolds that help people get into both the ideas and the operational nuts and bolts of Scratch. To create new entry points, the Scratch team created Microworlds, Scratch programming environments with a subset of programming blocks and prepopulated graphics organized around themes that connect with youth interests. For instance, one Microworld emphasizes hip-hop; dance has a series of interesting connections with programming—including the concepts of synchronicity, parallelism, and order of operations—and can serve as a natural connection between coding and urban arts. Other Microworlds include topics such as fashion, art, and comedy. After starting projects in the Microworlds, Scratchers can activate the full set of blocks and “graduate” to more complex projects. The hope is that by reducing the initial complexity of Scratch and providing learners and educators with interest-based entry points, educators will better understand how Scratch supports creative expression through code.8
Another approach from the Scratch team has been to develop decks of physical coding cards that show the range of projects that students can create—from games to stories to music to animations—and activity guides that again introduce students to diverse forms of expression in Scratch. The wide range of options is meant to guide educators toward seeing the potential of Scratch for individual expression—to push them away from homogenous, recipe-based projects for a whole class toward learning environments where students have the freedom to learn to code driven by their interests and a sense of play and exploration.9
While developing a computer programming language that can be used by children around the world is, on its own, a massive undertaking, the Lifelong Kindergarten lab is also invested in the massive undertaking of engaging educators around the world with these ideas. Even as the technical team at Scratch works to distribute the Scratch programming language as widely as possible, the outreach team is committed to building a community of educators and other fellow travelers invested in the ideas behind Scratch.
The Lifelong Kindergarten group has a variety of approaches to help educators better understand the ideas behind Scratch. At the annual Scratch conference, educators and Scratchers come to MIT to share ideas, connect with the Lifelong Kindergarten team, and build community. Each year on Scratch Day, teachers, librarians, after-school educators, young people, and other Scratchers around the world host their own local Scratch-related events and meetups. In 2018, there were over 1,200 registered Scratch Day events of all sizes around the world. The Scratch team recommended that these events include a welcoming ceremony, workshops for learning, “festive activities,” and times for people to share their experiences and celebrate the day. Resnick and his team engage educators online as well. The group has taught various iterations of Learning Creative Learning, an open online course that introduces educators to the ideas behind Scratch while engaging in projects with Scratch and related technologies from the group. In tandem with the release of Scratch 3.0 in early 2019, the lab launched a series of other online efforts aimed at educators, including Scratch in Practice, a more modular approach to online learning with resources organized around monthly themes. The site includes educator stories and examples, “Minute with Mitch” videos to share bite-sized ideas behind Scratch, “Natalie’s Notes”—blog posts with ideas for educational approaches—featured resources, and a curated Twitter feed of student ideas. Another experimental way to connect with educators is WeScratch, where Scratchers gather to work in small video conference rooms online to collaborate on projects or just do parallel programming with other Scratchers online.10
Another team at Harvard, ScratchEd, led by Resnick’s former student Karen Brennan, also works directly with educators to help them implement Scratch in classrooms in ways that are aligned with the project’s pedagogical foundations. Brennan and her team have led online courses like Getting Unstuck, a twenty-one-day email-based course during which participants received daily creative challenges, not unlike the Daily Create in DS106. ScratchEd organizes Scratch meetups, regular gatherings of Scratch educators throughout the year, where participants are encouraged to learn about Scratch through engaging in peer-led, open-ended learning experiences that immerse participants in the pedagogical foundations of Scratch so educators can create similar experiences for their own students.11
These efforts at tinkering with community building have not yet broken the curse of the familiar. Scratch has millions of students around the world logging in from schools, and the ScratchEd meetups have, in 2020, a little over 3,500 members. To be sure, these educators likely have influence over a wider circle of peers and colleagues, but they still represent only a fraction of the educators engaging students with Scratch. Scaling dissemination is far easier than scaling community, but educators change their practice in response to new ideas from peers, not through encounters with new technology alone. If the Scratch team is successful in encouraging the adoption of constructionist learning practices in schools, their success will come not just by building the right technological features in the Scratch platform, but by building communities of educators who can help their peers understand the pedagogical foundations underneath that technology.
Another of my favorite examples of community building comes from Desmos, a platform for teaching and visualizing mathematics. Desmos has its roots as an online graphing calculator project meant to replace the nearly ubiquitous Texas Instrument TI-84 calculators that are used in advanced math classes. The idea behind Desmos is that since many students have access to phones, tablets, laptops, and other mobile devices, they would no longer need to purchase a separate, single-function calculator if they could use an online graphing calculator on their multifunction device. Desmos is able to make the calculator free for students and teachers by licensing it to publishers and testing companies for use in their commercial projects. Pearson, College Board, and other companies pay Desmos for institutional uses, and Desmos can give away individual and classrooms uses of the technology for free. Over time, Desmos has developed beyond just mimicking the functions of a calculator to become a platform where students and teachers can build and share visualizations of mathematical models.12
Desmos’s chief academic officer is a former high school math teacher named Dan Meyer, who has built an extraordinary career as a math education researcher, designer, and teacher educator. Meyer’s vision of high-quality mathematics instruction has a strong emphasis on mathematical modeling, and he argues that much of the work that students do in math class should be organized around social and creative problem solving as a framework for developing conceptual understanding and procedural fluency.
Meyer first became well known in the mathematics education community for what he calls “three-act” math problems. In a three-act math problem, students watch a short video with some kind of interaction in a world; one of the original examples was a video with one of those octagonal tanks that are often seen in a geometry textbook (but almost never in the real world) being filled with water from a hose. The videos are simultaneously banal and somewhat mesmerizing. Dan recounts how in many classes, at some point, a student will say, “Man, how long is it going to take to fill it up?” and Dan can respond, “I’m so glad you asked!” The video begs a question, and once students find the question, then Dan provides more information. In the second act of the task, Dan presents the video again with slightly more detail: a timer and a few measurements, so that students have enough information to produce a set of mathematical models predicting when the tank will be filled. In the third act, the video runs again to the very end with a timer so students can see how their models line up with reality. The approach makes mathematical modeling, rather than just procedural computation, central to math classrooms. Desmos is one tool for creating graphical representations that support these kinds of modeling activities.13
Meyer has presented to math teachers in all fifty states, and he has written extensively about mathematical modeling and student agency in problem solving and how Desmos supports those ideas. He has worked relentlessly to simplify his pedagogical principles so that they can be shared and adopted. His talks and workshops provide a rationale for his approach, explain the limits of typical instruction, and demonstrate concretely how changes in teaching materials can spark new kinds of participation and mathematical thinking from students, especially those who are not typically active in math classes. In a keynote address, he might take a typical math problem from a textbook and show how it can be modified in slide presentation software to make it more open-ended and amendable to modeling, discussion, and discovery. Through traveling, speaking, and actively participating in math educator communities on blogs and Twitter, Meyer has nurtured a community of math educators excited about incorporating these kinds of modeling approaches into their teaching.
In late 2016, Meyer made an unusual announcement on the Desmos blog. Five years after its founding, Desmos was adding two features: the ability to incorporate short videos in instructional materials and multiple-choice items. Meyer wrote, “These are the first features lots of companies add to their online activity platforms, so we wanted to explain why we waited so long.”14
Meyer offered two reasons for the wait. One reason was that the Desmos team had an intuition that their earliest users would define the development of their product and its use and reputation. Desmos was attentive to the idea that in order to have a technology project that changed teaching, it had to scale through a community with a shared set of values about what good teaching looked like. Much as Scratch saw teacher meetups, after-school computer clubhouses and programs, and teacher online communities as central to their efforts to spread and scale, Meyer saw teacher networks, such as the state-level branches of the National Council for Teachers of Mathematics and online communities like the #iteachmath hashtag on Twitter, as essential to the spread of the ideas of modeling, discovery, and participation that are integral to the vision behind Desmos.
The second reason was that delaying the release of these features allowed Desmos to develop them in ways that aligned with the pedagogical goals of the company and community. For instance, Desmos’s multiple-choice-item creator requires by default that students have to explain their answer when they select one, and it also displays (when possible) three answers from other students to the same question. Meyer describes these features as “consistent with our interest in connecting students and their thinking together.”15
This combination of cultivation of community alongside deliberate development of technology is the tightrope that developers will need to walk to create technologies that can support meaningful changes in classroom practice. The impact of new technologies should not be measured by conventional metrics for the scale of an adoption: the number of user accounts, minutes of activity, or total clicks in log data. Instead, scale needs to be measured in terms of the communities of people that are engaged in sustained exploration of how technologies can lead to meaningful changes in practice. These technologies will not, in and of themselves, change institutional structures and practices. But communities of committed educators might.
For designers of educational technology like Desmos and Scratch to bring their visions to life, they must address the full complexity of educational institutions. They have to engage communities of practicing teachers, teacher educators in colleges and universities, and the material conditions of learning environments. Education technologists need to consider how teachers and learners access devices and software, how time is used in learning environments, how new technologies are embedded into assessment systems (whether that be how to adopt Desmos to high-stakes math tests or block-based programming languages to advanced placement computer science tests), and how state and district policies address math and computer science teaching and learning. It is a tall order for a technology company or research group to address these complex factors, but the nature of their engagement with the public is that they do not have to do this work alone. By thinking of educators and learners as partners and stakeholders, technologists empower allies in policy positions, district leadership, testing companies, higher education, teacher training, and other places to consider how different elements of a complex system might be tinkered with to be more amenable to the pedagogical visions espoused by Desmos and Scratch.
Stimulating change in conservative, complex systems is not easy. If Desmos and Scratch continue to be widely adopted in schools, I’d wager that it would be in precious few of these implementations that Mitch Resnick, Natalie Rusk, or Dan Meyer would say upon walking into a classroom, “Yes! This is what I think the teaching and learning with these technologies should look like!” In far more places, I suspect, their observation would be, “It looks like some of the teaching and learning we’d hoped for is happening here, but there are still too many ways where the technology is being bent to conform to an existing, conservative pedagogical structure.” Education historian Larry Cuban refers to this pattern as teachers “hugging the middle” of the pedagogical poles of pail filling and flame kindling. In his half-century of research on classroom practices, he has found that when pedagogical progressives encourage teachers to substantially reform their practices, it is much more common for teachers to adopt bits and pieces of new approaches, while maintaining consistent attachment to the kinds of routines that have dominated the grammar of schooling over the past two centuries.16
David Cohen and Jal Mehta describe this dynamic in a 2017 paper titled “Why Reform Sometimes Succeeds: Understanding the Conditions That Produce Reforms That Last.” Cohen and Mehta examine several of the major curriculum reform efforts over the last century, including the Sputnik-inspired efforts in STEM and social science in the 1950s and 60s and the efforts to reform math education as part of the standards-based reform movement beginning in earnest in the 1990s. Both movements critiqued the emphasis on memorization and procedure in American classrooms and pressed for more inquiry-oriented, student-centered instruction. In both cases, reforms took hold firmly in a handful of places with committed teams of educators, and ripples of influence could be found throughout the American system. For instance, in math education reforms, researchers found more evidence of instruction focused on making meaning of mathematics over just procedural learning, but this meaning was typically conveyed through teacher-centered instruction—pail filling on the kinds of things that students might have discovered through flame kindling if teachers only had the time.17
Cohen and Mehta argue that more substantial and durable changes can occur in “niches” within the ecology of educational systems. Certain forms of ambitious instruction can be found in Waldorf and Montessori schools and certain charter-school networks operating outside the public district–based education system. Other forms thrive in International Baccalaureate or Advanced Placement classrooms operating within, but somewhat cordoned off from, the public education system.
These historical perspectives offer a somewhat grim choice for ambitious reformers: thrive in small places (perhaps over populated with the affluent and privileged) or allow watered-down ideas to spread widely. If large-scale learning technologies offer a path through this Scylla and Charybdis of school change, it will be in offering technologies that can balance a set of competing priorities. They need to provide easy entry points—narrow foyers—that allow busy educators to adopt them, while affording the opportunity for educators to grow beyond their initial experiences. Quizlet has a narrow foyer, but there is nowhere to go beyond it. For a tool to break the curse of the familiar, the design of the experience needs to function as a vector for new pedagogical ideas. The experience of using the technology needs to remind or nudge or compel teachers and students to look beyond the familiar routines of the grammar of schooling and imagine new possibilities. The technology also needs to make complex teaching and learning practices easier to implement; it needs to be simpler and less time consuming for teachers to attempt ambitious instruction. And all of these technological changes need to be accompanied by equally difficult efforts to build networked communities of educators who can evangelize new ideas and practices and offer supports to novices attempting to shift their practice.18
The curse of the familiar will have a tight hold over education technology around the globe in the decades ahead. Those who break the curse will be tinkering not just with technology, but with ways of nurturing communities of innovative educators working on reforming systems while adopting new technologies. I view this problem as immensely difficult to solve but one worth working on nonetheless. Education technology is a good field for those who see themselves as patient optimists.