Paraline drawings include a subset of orthographic projections known as axonometric projections—the isometric, dimetric, and trimetric projections—as well as the entire class of oblique projections. Each type offers a slightly different viewpoint and emphasizes different aspects of the drawn subject. As a family, however, they combine the measured precision and scalability of multiview drawings and the pictorial nature of linear perspective. Because of their pictorial quality and relative ease of construction, paraline drawings are appropriate for visualizing an emerging idea in three dimensions early in the design process. They are capable of fusing plan, elevation, and section into a single view and illustrating three-dimensional patterns and compositions of space. Portions of a paraline drawing can be cut away or made transparent to see inside and through things, or expanded to illustrate the spatial relationships between the parts of a whole. At times, they can even serve as a reasonable substitute for a bird's-eye perspective.
Paraline drawings communicate the three-dimensional nature of an object or spatial relationship in a single image. Hence, they are also called single-view drawings to distinguish them from the multiple and related views of plans, sections, and elevations. They can be distinguished from the other type of single-view drawing, linear perspective, by the following pictorial effects.
There are several types of paraline drawings, each named after the method of projection that is used to develop them. Two of the most common in architectural drawing are discussed in this chapter: isometric and oblique drawings.
In both isometric and oblique drawings:
The images that emerge from oblique projections are distinct from isometric views that develop from orthographic projection. The ease with which we can construct an oblique drawing has a powerful appeal. If we orient a principal face of the subject parallel to the picture plane, its shape remains true and we can draw it more easily. Thus, oblique views are especially convenient for representing an object that has a curvilinear, irregular, or complicated face.
Isometric drawings establish a lower angle of view than plan obliques and give equal emphasis to the three principal sets of planes. They preserve the relative proportions of a subject or scene and are not subject to the distortion inherent in oblique views.
Plan obliques present a higher angle of view than isometric drawings and emphasize the set of horizontal planes by revealing their true size, shape, and proportions.
Elevation obliques orient a principal vertical face or set of vertical planes parallel to the picture plane and therefore reveal their true sizes, shapes, and proportions.
There are three basic approaches to constructing the entire class of paraline drawings. When constructing and presenting a paraline drawing, keep in mind that paraline views are easiest to understand if vertical lines in space are also oriented vertically on the drawing surface.
Any circles oblique to the picture plane appear as ellipses. To draw such a circle in a paraline drawing, we must first draw a paraline view of the square that circumscribes the circle. Then we can use either of two approaches to drawing the circle within the square.
We can enhance the perceived depth of a paraline drawing by utilizing a hierarchy of line weights to distinguish between spatial edges, planar corners, and surface lines.
Even though a paraline drawing always presents either an aerial view or a worm's-eye view of a subject, we can construct a paraline view in any of several ways to reveal more than the exterior form and configuration of a design. These techniques allow us to gain visual access to the interior of a spatial composition or the hidden portions of a complex construction. We categorize these techniques into expanded views, cutaway views, phantom views, and sequential views.
To develop what we call an expanded or exploded view, we merely shift portions of a paraline drawing to new positions in space. The finished drawing appears to be an explosion frozen at a point in time when the relationships between the parts of the whole are most clear.
A cutaway view is a drawing having an outer section or layer removed to reveal an interior space or an internal construction. This strategy can also effectively manifest the relation of an interior to the exterior environment.
A phantom view is a paraline drawing having one or more parts made transparent to permit the presentation of internal information otherwise hidden from our view. This strategy effectively allows us to unveil an interior space or construction without removing any of its bounding planes or encompassing elements. Thus, we are able to simultaneously see the whole composition and its internal structure and arrangement.
The grouping and layering functions of 2D drawing and 3D CAD or modeling programs give us the ability to more easily create the different types of paraline views. By organizing elements and assemblies of a three-dimensional construction into separate groups or layers, we can selectively control their location, visibility, and appearance, as illustrated on this and the facing page.
While a paraline is a single-view drawing useful in displaying three-dimensional relationships, a series of paraline views can effectively explain processes and phenomena that occur in time or across space.