The aim of this book is to make science intelligible to non-scientists. Of course, like any anthology, it is meant to be entertaining, intriguing, lendable-to-friends and good-to-read as well, and the first question I asked about any piece I thought of including was, Is this so well written that I want to read it twice? If the answer was no, it was instantly scrapped. But alongside this question I asked, Does this supply, as it goes along, the scientific knowledge you need to understand it? Will it be clear to someone who is not mathematical, and has no extensive scientific education? Even if it was admirable in other ways, failure to qualify on these counts landed it on the reject pile.

Scientists themselves are not always good at judging intelligibility – and why should they be? They are specialists, paid to communicate with fellow specialists. Of course, they have to communicate, too, with industry, the government, grant-giving bodies and other institutions. But they can often assume a level of expertise in these negotiations which is well above that of the general public. Over the last five years I have read many books and articles by scientists, ostensibly for a popular readership, which start out intelligibly and fairly soon hit a quagmire of equations or a thicket of fuse-blowing technicalities, from which no non-scientist could emerge intact. Relativity: The Special and General Theory. A Popular Exposition, by Albert Einstein, Ph.D. (1920) is only a particularly distinguished example of a class of ‘popular expositions’, still being published, that could not conceivably be understood by more than a tiny fraction of any populace.

Fortunately for this anthology, however, popular science has improved immensely in the later twentieth century. Writers like Isaac Asimov, Arthur C. Clarke, Martin Gardner, Freeman Dyson, Carl Sagan, Richard Feynman, Stephen Jay Gould, Peter Medawar, Stephen Hawking, Lewis Wolpert and Richard Dawkins have transformed the genre, combining expert knowledge with an urge to be understood, and bridging the intelligibility gap to delight and instruct huge readerships. In the process, they have created a new kind of late twentieth-century literature, which demands to be recognized as a separate genre, distinct from the old literary forms, and conveying pleasures and triumphs quite distinct from theirs.

True, these writers had predecessors in the nineteenth century – T. H. Huxley, for example, or Charles Darwin himself, who also strove to reach the general reading public. But in the mid-nineteenth century the general reading public was a much smaller and more select thing than it is now. The challenge for a late twentieth-century writer of popular science is different and greater. The books that succeed represent achievements of a remarkable and unprecedented kind. Nor is it clear on what grounds they can be reckoned inferior to novels, poems and other representatives of the older genres. In what respect, for example, is a masterpiece like Richard Dawkins’s The Blind Watchmaker imaginatively inferior to a distinguished work of fiction such as Martin Amis’s Einstein’s Monsters (or the hundreds of lesser novels that jam the publishers’ lists each year)? Both are clearly the products of brilliant minds; both are highly imaginative; and Amis is more excited by scientific ideas than most contemporary writers. Nevertheless, the essential distinction between them seems to be that between knowledge and ignorance. From the viewpoint of late twentieth-century thought, Dawkins’s book represents the instructed and Amis’s the uninstructed imagination.

Because I wanted the pieces I included to be seriously informative as well as enjoyable, I decided not to allow in science fiction (which would, in any case, need an anthology of its own), or those plentiful anecdotes about scientists’ private lives which show how droll or winning they were despite their erudition. The misty precursors of true science – alchemy, astrology – have also been left out, partly because they can now be classified as history not science, and partly because they tend to encourage in the reader an amused and superior response which is not the reaction I am looking for.

For similar reasons I decided, after some hesitation, not to include ancient science (Aristotle, Pliny, etc.). It is true, of course, that this sometimes foreshadows modern science. But even when it does it is often forbiddingly technical, in a way that no amount of jazzing-up in translation can overcome. After a good deal of searching, I concluded that there were virtually no examples of ancient science that would have anything more than curiosity value – if that – for a general reader today. So my anthology starts with the Renaissance, at a point where two sciences, anatomy and astronomy, take decisive steps towards the modern age, and find exponents who can still be read with pleasure.

A final kind of writing I decided (rather quickly) to exclude was the large body of opinionativeness that has gathered around such questions as whether science is a Good or a Bad Thing, and whether we would be better off if we did not know the earth went round the sun. Ignorance and prejudice seem to be the most prolific contributors to this branch of controversy, and I am not anxious to give either house-room.

In the main, then, I have tried to stick to serious science, though serious science softened up for general consumption. Scientists will object quite rightly that I have included technology as well as science. The pieces on the Wright brothers’ aeroplane or on Daguerre and the first photograph, for example, would not figure in a strictly scientific anthology. But I included them and others because, for the general reader, science and technology are intimately connected – as, indeed, they are for scientists. Photography and manned flight both became possible because of scientific perceptions, and technology has advanced scientific discovery from the time of Galileo’s telescope.

Choosing the passages to include was one thing: arranging them, another. Should I separate out the various sciences – all the biology pieces in one section; all the chemistry in another? Or would a roughly chronological arrangement be better? I decided it would, because jumping from science to science with each item makes for a livelier read, and the chronological framework turns the book into a story – a way of taking in the development of science over the last five centuries. Some of this story-telling is carried on in the introductions to each extract, and sometimes – as, for example, in the sections on Relativity and the Uncertainty Principle – I have drawn together material from several sources, including poets and novelists, to show how a particular scientific discovery did, or did not, enter the bloodstream of the culture.

Broadly speaking science-writing tends towards one of two modes, the mind-stretching and the explanatory. In practice, of course, any particular piece of science-writing will combine the two in various proportions. Still, they seem to be the extremes between which science-writing happens. The mind-stretching, also called the gee-whizz mode, aims to arouse wonder, and corresponds to the Sublime in traditional literary categories. When scientists tell us that if we could place in a row all the capillaries in a single human body they would reach across the Atlantic, or that the average man has 25 billion red blood corpuscles, or that the number of nerve cells in the cerebral cortex of the brain is twice the population of the globe, these are contributions to the mind-stretching mode – which does not mean, of course, that they are not serious and profound in their implications as well. A similarly amazing example, and less flattering to our self-esteem, is the proposition (from an essay by George Wald) that though a planet of the earth’s size and temperature is a comparatively rare event in the universe, it is estimated that at least 100,000 planets like the earth exist in our galaxy alone, and since some 100 million galaxies lie within the range of our most powerful telescopes, it follows that throughout observable space we can count on the existence of at least 10 million million planets more or less like ours.

As readers will find, I have included some examples of this mode in my anthology, because the peculiar thrill and spiritual charge of science would not be fairly represented without it. But my preference has been, and is, for the other mode, the explanatory. What I most value in-science-writing is the feeling of enlightenment that comes with a piece of evidence being correctly interpreted, or a problem being ingeniously solved, or a scientific principle being exposed and clarified. There are many instances of these three processes in the anthology, but if I had to choose one favourite example of each they would be from Galileo, Darwin and Haldane respectively.

When Galileo looked at the moon through his telescope, he and everyone else thought it was a perfect sphere. He was astonished, he tells us, to see bright points within its darkened part, which gradually increased in size and brightness till they joined up with its bright part. It occurred to him that they were just like mountain tops on earth, which are touched by the sun’s morning rays while the lower ground is still in shadow. So he deduced correctly that the moon’s surface was not smooth after all, but mountainous. To follow Galileo as he explains his observations step by step is to share an experience of scientific enlightenment that fiction and poetry, for all their powers, cannot give, since they can never be so authentically engaged with actuality and discovery.

Darwin supplies a beautiful example of the second process, the ingenious solution of a problem, when he is faced with the need to explain how species of freshwater plants could spread to remote oceanic islands without being separately created by God. It occurs to him that the seeds might be carried on the muddy feet of wading birds that frequent the edges of ponds. But that raises the question of whether pond mud contains seeds in sufficient quantities. So he takes three tablespoonfuls of mud from the edge of his pond in February – enough to fill a breakfast cup – and keeps it covered in his study for six months, pulling up and counting each plant as it grows. Five hundred and thirty-seven plants grow, of many different species, so that Darwin is able to conclude that it would be an ‘inexplicable circumstance’ if wading birds did not transport the seeds of freshwater plants, as he had suspected. Once again, fiction could not compete with the impact of this, since the force of Darwin’s account depends precisely on its not being fiction but fact.

J. B. S. Haldane’s famous essay ‘On Being the Right Size’ superbly exemplifies the third process – the exposition of a scientific principle. Restricting his mathematics to simple arithmetic, and keeping in mind the need for powerful, graphic examples, Haldane is able to demonstrate, unforgettably, by the end of his second paragraph, that the 60-foot-high Giants Pope and Pagan in Bunyan’s Pilgrim’s Progress could never have existed, because they would have broken their thighs every time they walked. The example is, of course, purposefully chosen, for out goes, with Bunyan, the whole world of (as Haldane saw it) religious mumbo-jumbo that Bunyan stood for, and the light of pure reason comes flooding in instead.

But if the explanatory mode is science-writing’s breath of life – its armoury, palette and climate – the problem for science-writers is how to explain. How can science be made intelligible to non-scientists? The least hopeful answer is that it cannot. Giving an inkling of what modern science means to readers who cannot manage higher mathematics is, Richard Feynman has proposed, like explaining music to the deaf. This would be a desolating conclusion if Feynman were not himself among the most brilliant of explainers. His success depends upon his genius for making his material human. He saturates his writing with his individual style and personality. But, more than that, he freely imports a kind of animism into his experimental accounts – discussing, for example, how an individual photon ‘makes up its mind’ which of a number of possible paths to follow.

Ruskin uses animism, too, when – in his masterly tribute to rust – he tells his readers that iron ‘breathes’, and ‘takes oxygen from the atmosphere as eagerly as we do’. Miroslav Holub is animistic when (in perhaps the most mind-expanding piece in the whole anthology) he imagines the adrenalin and the stress hormones in the spilt blood of a dead muskrat still sending out their alarms, and the white blood cells still busily trying to perform their accustomed tasks, bewildered by the unusual temperature outside the muskrat’s body. In fact, Feynman-Ruskin-Holub-type animism is a persistent ally in the popular science-writer’s struggle to engage the reader’s understanding.

To a scientist, this might seem ridiculous. Lewis Carroll rubbished the whole idea in The Dynamics of a Particle:

However, it is not clear that animism is as daft as Carroll makes it appear. All science is inevitably drenched in our human presumptions, designs and conceptions. We cannot get outside the human shapes of our brains. Our observation inevitably alters what it observes. This perception is usually associated with Heisenberg. But it was already evident to Francis Bacon at the start of the seventeenth century, who saw that perfect, pure objective science was impossible, not only because we are forced to use language, or some kind of numerical notation, which does not ‘naturally’ belong to the objects we name or number, but also because we seek patterns, shapes and symmetries in nature which correspond to our own preconceptions, not to anything that is ‘really’ there. From this viewpoint, to say that iron ‘breathes’ is no more absurd than to say that it is called ‘iron’, or that its chemical symbol is Fe. In each case, we add something human to its remote, alien, unknowable nature – a nature that has nothing to do with human thought, and is therefore altered the instant we think about it.

Whatever reservations the reader may have about this line of argument, it remains true that animism is extraordinarily useful to science-writers, as many pieces in this book testify. To preserve a personal element I have also tried, as often as I could, to present scientists talking about themselves at the moment of discovery. Nothing can match the immediacy of such accounts. Francis Jehl’s description of the feverish months of trial and error that preceded the development of the world’s first electric light bulb in Edison’s laboratory, or Ronald Ross’s memory of the sweltering afternoon in Secunderabad when he saw, through his microscope, the secret of malaria, or William Beebe exclaiming at the astonishing blueness of the sea 700 feet beneath the ocean, so intense that it drives even the thought of any other colour out of his head – if I could have found enough of them, I should have been tempted to make my whole anthology out of pieces like this.

Given the boundless human implications of science, it seems strange that poets have not used it more. One of my disappointments in editing this anthology was to find so little poetry – or so little that was not embarrassingly bad. Lifting the embargo on ancient science would have helped a bit, because I could have included some Lucretius – but it would have been too high a price. Among English poets, even Shelley, who knew more about science than most, does not really write scientific poetry. To treat ‘The Cloud’, say, as a poem about meteorology (though it is that) would be to ignore most of its meaning. Generally speaking, science has had a bad effect on poets, inciting them to bombast (of the ‘O thou terrestrial ball’ variety) or to drivelling regrets that science has banished ‘faery lore’.

Science’s dominant position in contemporary culture might surely have been expected to breed some modern scientific poets. Yet most poets remain science-blind. There are a few distinguished exceptions, as the reader will find: John Updike, Lavinia Greenlaw, John Frederick Nims. But neglect is the norm. Why?

Perhaps because it is assumed that the poetic imagination is superior to the scientific, so poets simply need not bother with science. Certainly this used to be a favourite idea. ‘I believe the souls of 500 Sir Isaac Newtons would go to the making up of a Shakespeare or a Milton,’ pronounced Samuel Taylor Coleridge. Convictions of this kind still linger, especially among those who know nothing about Sir Isaac Newton. Yet Coleridge’s credo does not, when you inspect it, mean much. Presumably he relates soul-size to imaginative power – and obviously poets do use their imagination differently from scientists. But there seem no grounds for deciding they use it better – or worse.

The difference can be seen right at the start of the modern scientific era if we glance, for example, at the way Shakespeare and Bacon write about clocks. For Shakespeare a clock is something that tells the time. ‘When I do count the clock that tells the time,’ one of his sonnets starts. But for Bacon a clock is a machine which, because he understands it scientifically, he can put to various uses. Thinking about weight and gravitation, he wondered if the weight of an object would increase and decrease according to whether it was nearer to or further from the centre of the earth. Obviously you cannot discover this by weighing the object at various heights, because the weights themselves will also have got heavier or lighter, like the object. What you do, Bacon decides, is take two clocks, one worked by weights, the other by a spring. You adjust them so they are running at the same speed, then you take them up a mountain and down a mine. Up the mountain the clock with weights will go slower, because they have become lighter. Down the mine it will go faster.

He was almost right. The clock with weights would go slower up the mountain. But since the earth’s weight is not concentrated at its centre, the clock going down the mine would leave progressively more of the earth’s mass above it, so it would go slower too. The point, though, is not Bacon’s Tightness or wrongness, but the way he thinks about clocks compared to Shakespeare. For Shakespeare the idea of a clock has shrunk to something that tells the time. For Bacon, the clock is a machine, which can be engineered in various ways, and which has an experimental potential independent of the time-telling role ordinary language has allocated to it. It seems rather unfair to call Bacon less imaginative than Shakespeare in this instance. The poet remains satisfied with the conventional attributes of clocks, whereas the scientist’s exploratory mind takes him to a wholly new function for a clock, which reveals something unexpected about the universe.

Of course this example is grossly slanted in Bacon’s favour, and it would be ridiculous to disparage Shakespeare on the strength of it. Shakespeare’s sonnet is no less a great poem because it is uninterested in gravitation. I have risked the comparison with Bacon because it shows us already, at the start of the seventeenth century, a scientist needing to rid himself of language’s normal constraints (the usual functions language assigns to ‘clock’), in order to think. From this historical moment on, scientists increasingly found that they had to develop their own special language, esoteric and forbidding to outsiders, but valuable to scientists because of its freedom from the vast cloud of associations, nuances and ambiguities that ordinary language carries along with it, and on which poets depend.

To poets, the new technical language seemed a sterile sea of jargon, in which the imagination would freeze and drown. John Donne was the first and last English poet not to feel like this about scientific language. He was lucky, being born at just the right time (1572), after the beginning of modern science but before its specialized technical vocabularies had really taken off. So for him, scientific language could still be warm, mysterious and sonorous, like poetry. He could think of love, and the scientific methods used for establishing latitude and longitude, as perfectly compatible and mutually enriching subjects:

Not much more than fifty years later, Milton took an altogether different and alienated view of scientists and scientific language, deriding astronomers who:

Comparing the two examples we can see science, in the space of a half-century (the same half-century that saw the foundation of the Royal Society), beginning to become a hated alternative to poetry, barbaric, ugly, offensive to cultured ears. By the early twentieth century the process had developed so far that the Spanish philosopher José Ortega y Gasset, in The Revolt of the Masses, could select science (along with democracy) as a key cause of modern ‘primitivism and barbarism’. He regretted that ‘while there are more scientists than ever before, there are far fewer cultured men.’

Wordsworth, roughly halfway between Donne and us, prophesied that things would not turn out like this. He believed that science should and would become a subject for poetry. In 1800 he wrote:

But Wordsworth was wrong. This has not happened; or not yet. Perhaps, as more scientists follow the trend of the writers I have mentioned, and make science available to general readers, it will permeate the culture and Wordsworth’s prophecy will come true. As things are, however, modern poets avoid science, and, it seems, because they feel inferior to it, not (like Coleridge) superior. W. H. Auden expresses the general loss of confidence: ‘When I find myself in the company of scientists, I feel like a shabby curate who has strayed by mistake into a drawing room full of dukes.’

Resistance to science among what Ortega y Gasset calls ‘cultured men’ has sometimes been strengthened by the objection that science is godless and amoral. Both charges need some qualification. It is perfectly possible for a scientist to believe in God, and even to find scientific evidence for God’s existence. To sceptics this might suggest a rather nutty combination of laboratory-bore and Jesus-freak. But when a scientist of James Clerk Maxwell’s eminence uses molecular structure as an argument for the existence of God, few will feel qualified to laugh. Of course, atheistical scientists are plentiful too. The zoologist Richard Dawkins has voiced the suspicion that all religions are self-perpetuating mental viruses. But since everything science discovers can, by sufficiently resolute believers, be claimed as religious knowledge, because it must be part of God’s design, science cannot be regarded as inherently anti-religious.

On the contrary, its aims seem identical with those of theology, in that they both seek to discover the truth. Science seeks the truth about the physical universe; theology, about God. But these are not essentially distinct objectives, for theologians (or at any rate Christian theologians) believe God created the universe, so may be contacted through it. Admittedly, many scientists insist that science and religion are irreconcilable. The neuropsychologist Richard Gregory has declared: ‘The attitudes of science and religion are essentially different, and opposed, as science questions everything rather than accepts traditional beliefs.’ This does less than justice to religion’s capacity for change. The whole Reformation movement in Europe, for example, was about not accepting traditional beliefs. It might be objected that science depends on evidence, while religion depends on revealed truth, and that this constitutes an insuperable difference. But for the religious, revealed truth is evidence. Theology might, without any paradox, be regarded as a science, committed to persistently questioning and reinterpreting the available evidence about God. True, by calling itself ‘theology’ it appears to take it for granted that God (theos) exists, which, scientifically speaking, is rather a careless usage. However, there is no reason why theological research should not lead the researcher to atheism, and no doubt it often has, just as (as we have seen) scientific research has led some researchers to God.

The real antithesis of science seems to be not theology but politics. Whereas science is a sphere of knowledge, politics is a sphere of opinion. Politics is constructed out of preferences, which it strives to elevate, by the mere multiplication of words, to the status of truths. Politics depends on personalities and rhetoric; social class, race and nationality are elemental to it. All of these are irrelevant to science. Further, politics relies, for its very existence, upon conflict. It presupposes an enemy. It is essentially oppositional, built on warring prejudices. If this oppositional structure were to collapse, politics could not survive. There could be no politics in a world of total consensus. Science, by contrast, is a co-operative not an oppositional venture. Of course, the history of science resounds with ferocious argument and the elaboration and destruction of rival theories. But when consensus is reached science does not collapse, it advances. Another crucial difference is that politics aims to coerce people. It is concerned with the exercise of power. Science has no such designs. It seeks knowledge. The consequence of this difference is that politics can and frequently does use violence (war, genocide, terrorism) to secure its ends. Science cannot. It would be ludicrous to go to war to decide upon the truth or otherwise of the second law of thermodynamics.

Needless to say, the ideal state I have described, in which science is free from and antithetical to politics, is not one that survives in the real world, where politics invades and contaminates science as it does everything else. But the warlike and destructive uses to which science has been put have nothing essentially to do with science: they are the responsibility of politics. Science’s apolitical nature is worth stressing, because it helps us to defuse the charge that it is amoral. It allows us to see science’s amorality not as a defect but as a condition of its strength and purity. Politics, of course, is inseparable from morality. It battens on morality, or on moralizing, like a tapeworm on the gut. Consequently science could not free itself from politics except by being amoral.

Approaches to life that are, in moral terms, cold, clinical and inhuman, are sometimes labelled ‘scientific’, but this is a misunderstanding, arising from the simple-minded transference of scientific method to moral attitudes. Science endorses no such transference, and no moral attitudes, cold or otherwise. In different minds, the same set of scientific propositions can prompt quite contrary moral responses. Darwin’s theory of evolution, relating humans to apes, seemed – and seems – degrading to many humans. But Bruce Frederick Cummings accepts it with gusto:

Scientists themselves may have moral or immoral reasons for pursuing their research. But these leave no mark on their findings, which are right or wrong, to whatever degree, irrespective of their discoverer’s motives. David Bodanis may be right to trace a link between Pasteur’s loathing of mass humanity and his connection of disease with bacteria. The scientific credentials of the connection are, however, neither strengthened nor weakened by Pasteur’s misanthropy.

The last few paragraphs may prompt readers to ask why they should bother to know about science if it cannot help to resolve moral or religious questions. The best answer is that science is, simply, what is known, and the only alternative to it is ignorance. Coleridge (whatever his opinion of Sir Isaac Newton’s soul) saw this clearly:

As science has grown, so, inevitably, has the ignorance of those who do not know about it. Within the mind of anyone educated exclusively in artistic and literary disciplines, the area of darkness has spread enormously during the later twentieth century, blotting out most of modern knowledge. A new species of educated but benighted being has come into existence – a creature unprecedented in the history of learning, where education has usually aimed to eradicate ignorance. The most highly gifted members of this new species have generally been the most forthright in regretting their deprivation. ‘Exclusion from the mode of thought which is habitually said to be the characteristic achievement of the modern age’ is, lamented the distinguished American literary critic Lionel Trilling, ‘bound to be experienced as a wound to our intellectual self-esteem.’

More recently, however, ignorance of science has acquired a degree of political correctness. The Green movement, blaming science for global pollution, has contributed to this. So has feminism, which has demonized science as the embodiment of the male will-to-power. Even supposing these attacks were justified, however, they would not constitute reasons for relinquishing science, rather the reverse. Countering the pollution that political misdirection of science has caused can only be achieved by scientific means. Even at its most basic level, the monitoring, protection and conservation of endangered plant and animal species is inevitably a scientific endeavour. Nor does the feminist complaint that science is dominated by male aims and attitudes justify the neglect or rejection of science by women. On the contrary, it makes urgently desirable the increased involvement of women in scientific education and research. This is the view put forward by one of the most cogent of the feminist critics, Evelyn Fox Keller, in her book Reflections on Gender and Science (1984). Herself a mathematical biophysicist, and a biographer of the Nobel prizewinning geneticist Barbara McClintock, Keller sees scientific knowledge as ideally ‘a universal goal’, rather than the expression of destructively masculine drives.

A text that has been utilized to reinforce feminist and other disparagements of science is Thomas S. Kuhn’s The Structure of Scientific Revolutions (1962). This popularized the idea that scientists are not really as rational as they suppose, but follow cultural trends, shifting from one paradigm to another for reasons that have nothing to do with objective truth. A criticism of Kuhn’s book often voiced by scientists is that in describing how beliefs came to be held it leaves out of account the question of their truth or falsehood.

The effect of these various devices for discrediting science has been to allow ignorance to appear not merely excusable but righteous. Teachers at British universities will know that most arts students happily forget what little science they learnt in their schooldays. Even if you are prepared for this, however, the extent of their ignorance can come as a shock. Recently, in an Oxford literature seminar, I cited John Donne’s lines, where Donne observes that no one at the time he was writing (1612) knew how blood gets from one ventricle of the heart to the other. I asked the class how, in fact, it does. There were about thirty students present, all in their last year of study, all outstandingly intelligent, and none of them knew. One young man ventured haltingly that it might be ‘by osmosis’. That the blood circulated round their bodies, they seemed unaware.

The annual hordes competing for places on arts courses in British universities, and the trickle of science applicants, testify to the abandonment of science among the young. Though most academics are wary of saying it straight out, the general consensus seems to be that arts courses are popular because they are easier, and that most arts students would simply not be up to the intellectual demands of a science course. On this issue, Sir Peter Medawar is worth quoting, since he is well qualified to judge, and he disagrees. Commenting on the career of James Watson, the young American who became world famous in 1953 when, with Crick, Wilkins and Franklin, he discovered the molecular structure of DNA, Medawar says:

Medawar’s remarks caused a considerable rumpus, especially his claim that scientists had something to be clever about whereas arts students had not. Surely, he was asked, he did not intend to imply that Shakespeare, Tolstoy, etc. were not proper subjects for cleverness? Less attention was paid to his claim that science could bring happiness, and not just to geniuses but to people of ordinary ability. Yet that was surely the vital part of his message. If young people are to be wooed back to science, it will not be done by telling them that if they continue to spurn it, Britain will face economic decline (true as that may be). But if scientists demonstrate by their writing that Medawar’s promises of pleasure and self-fulfilment are true, they will not lack recruits.

The new generation of popular science-writers, whose work I have drawn on in this anthology, are the advance guard of that campaign. If readers ask, as they well might, what I, a professor of literature, think I am up to editing a science anthology, my answer is that I have done it for pleasure, self-fulfilment and (in Coleridge’s words) ‘the gratification of knowing’.