CONTENTS OF PART 2

Preface

Notation

I. THE NORMAL FERMI LIQUID

§ 1. Elementary excitations in a quantum Fermi liquid

§ 2. Interaction of quasi-particles

§ 3. Magnetic susceptibility of a Fermi liquid

§ 4. Zero sound

§ 5. Spin waves in a Fermi liquid

§ 6. A degenerate almost ideal Fermi gas with repulsion between the particles

II. GREEN’S FUNCTIONS IN A FERMI SYSTEM AT T = 0

§ 7. Green’s functions in a macroscopic system

§ 8. Determination of the energy spectrum from the Green’s function

§ 9. Green’s function of an ideal Fermi gas

§ 10. Particle momentum distribution in a Fermi liquid

§ 11. Calculation of thermodynamic quantities from the Green’s function

§ 12. Ψ operators in the interaction representation

§ 13. The diagram technique for Fermi systems

§ 14. The self-energy function

§ 15. The two-particle Green’s function

§ 16. The relation of the vertex function to the quasi-particle scattering amplitude

§ 17. The vertex function for small momentum transfers

§ 18. The relation of the vertex function to the quasi-particle interaction function

§ 19. Identities for derivatives of the Green’s function

§ 20. Derivation of the relation between the limiting momentum and the density

§ 21. Green’s function of an almost ideal Fermi gas

III. SUPERFLUIDITY

§ 22. Elementary excitations in a quantum Bose liquid

§ 23. Superfluidity

§ 24. Phonons in a liquid

§ 25. A degenerate almost ideal Bose gas

§ 26. The wave function of the condensate

§ 27. Temperature dependence of the condensate density

§ 28. Behaviour of the superfluid density near the λ-point

§ 29. Quantized vortex filaments

§ 30. A vortex filament in an almost ideal Bose gas

§ 31. Green’s functions in a Bose liquid

§ 32. The diagram technique for a Bose liquid

§ 33. Self-energy functions

§ 34. Disintegration of quasi-particles

§ 35. Properties of the spectrum near its termination point

IV. GREEN’S FUNCTIONS AT NON-ZERO TEMPERATURES

§ 36. Green’s functions at non-zero temperatures

§ 37. Temperature Green’s functions

§ 38. The diagram technique for temperature Green’s functions

V. SUPERCONDUCTIVITY

§ 39. A superfluid Fermi gas. The energy spectrum

§ 40. A superfluid Fermi gas. Thermodynamic properties

§ 41. Green’s functions in a superfluid Fermi gas

§ 42. Temperature Green’s functions in a superfluid Fermi gas

§ 43. Superconductivity in metals

§ 44. The superconductivity current

§ 45. The Ginzburg–Landau equations

§ 46. Surface tension at the boundary of superconducting and normal phases

§ 47. The two types of superconductor

§ 48. The structure of the mixed state

§ 49. Diamagnetic susceptibility above the transition point

§ 50. The Josephson effect

§ 51. Relation between current and magnetic field in a superconductor

§ 52. Depth of penetration of a magnetic field into a superconductor

§ 53. Superconducting alloys

§ 54. The Cooper effect for non-zero orbital angular momenta of the pair

VI. ELECTRONS IN THE CRYSTAL LATTICE

§ 55. An electron in a periodic field

§ 56. Effect of an external field on electron motion in a lattice

§ 57. Quasi-classical trajectories

§ 58. Quasi-classical energy levels

§ 59. The electron effective mass tensor in the lattice

§ 60. Symmetry of electron states in a lattice in a magnetic field

§ 61. Electron spectra of normal metals

§ 62. Green’s function of electrons in a metal

§ 63. The de Haas–van Alphen effect

§ 64. Electron–phonon interaction

§ 65. Effect of electron–phonon interaction on the electron spectrum in a metal

§ 66. The electron spectrum of solid insulators

§ 67. Electrons and holes in semiconductors

§ 68. The electron spectrum near the degeneracy point

VII. MAGNETISM

§ 69. Equation of motion of the magnetic moment in a ferromagnet

§ 70. Magnons in a ferromagnet. The spectrum

§ 71. Magnons in a ferromagnet. Thermodynamic quantities

§ 72. The spin Hamiltonian

§ 73. Interaction of magnons

§ 74. Magnons in an antiferromagnet

VIII. ELECTROMAGNETIC FLUCTUATIONS

§ 75. Green’s function of a photon in a medium

§ 76. Electromagnetic field fluctuations

§ 77. Electromagnetic fluctuations in an infinite medium

§ 78. Current fluctuations in linear circuits

§ 79. Temperature Green’s function of a photon in a medium

§ 80. The van der Waals stress tensor

§ 81. Forces of molecular interaction between solid bodies. The general formula

§ 82. Forces of molecular interaction between solid bodies. Limiting cases

§ 83. Asymptotic behaviour of the correlation function in a liquid

§ 84. Operator expression for the permittivity

§ 85. A degenerate plasma

IX. HYDRODYNAMIC FLUCTUATIONS

§ 86. Dynamic form factor of a liquid

§ 87. Summation rules for the form factor

§ 88. Hydrodynamic fluctuations

§ 89. Hydrodynamic fluctuations in an infinite medium

§ 90. Operator expressions for the transport coefficients

§ 91. Dynamic form factor of a Fermi liquid

Index