Preface

This project has emerged over many years, with two key phases. The first was in 1990 during the spring semester of my freshman year in college, when I was studying the history of early civilization for one of my liberal arts classes. As an engineer just entering the world of liberal arts, I was a little out of place in the course’s roundtable discussion format, but I found the topic fascinating and eagerly engaged in the debates. Partway through that year, in one of our classroom discussions, I concluded and stated that the most critical ingredients of modern civilization are water and energy. This idea stood in contrast with the prevailing hierarchy of food, water, shelter, and air, which had been posed as humanity’s most important biological and physiological needs by psychologist Abraham Maslow in his famous 1943 paper “A Theory of Human Motivation.”

Although Maslow’s ranking seems true at the individual level, I thought that, at a collective level of civilization, the hierarchy might look very different: we need energy and water to make our food (water to grow the crops, energy to make the fertilizer and reap the crops), to make our shelters (water to grow the wood, energy to cut the wood down), and to achieve every other hallmark of highly modernized existence.

Years later, in 2005, while I was working at the RAND Corporation (a think tank) on some analytical projects related to energy, manufacturing, innovation, and security, my wife’s aunt, Debbie Cook, who was serving on the city council of Huntington Beach, California (on her way to eventually serving as mayor), made a passing remark to me about how much water was used by the main power plant in her city. That remark brought my freshman realization rushing forward. This time, however, I was in a position to do something about it. I started drafting notes that turned into research projects, scientific articles, college lectures, speeches, book chapters, and op-ed pieces, ultimately creating a large body of work on whose lessons and stories this book is built.

In parallel and unbeknownst to me, Nobel laureate Rick Smalley of Rice University had created a list of “Top Ten Problems of Humanity for the Next 50 Years,” which I discovered from Turk Pipkin’s documentary The Nobelity Project. Smalley’s list, organized in descending order of importance, was as follows: energy, water, food, environment, poverty, terrorism and war, disease, education, democracy, and population. That the top of my list coincided with that of a Nobel laureate was satisfying vindication and inspiration to pursue extensive research into the interrelationships between energy and water. I initiated the work while at the RAND Corporation, and expanded it significantly after joining the faculty of the University of Texas at Austin.

The order of importance in Smalley’s list was not accidental. The challenges were stacked in sequence based on their overall importance to society. Notably, energy and water are at the top of the list, ahead of food and shelter. From Smalley’s perspective, it is the fact that we can use energy and water to solve subsequent problems in a cascading fashion that puts them at the top. Energy is at the top of the list as the great enabler for all that follows. Developing abundant sources of clean, reliable, affordable energy leads to an abundance of clean water. Having an abundance of clean water enables food production and protects the environment, and so on down the list.

But there is more to the equation than Smalley’s list demonstrates. It is not just the good news story that solving one challenge enables a solution for the other, but there is also the corollary that constraints in one can become constraints in the other. In fact, because of this interdependence, society is vulnerable to cascading failures in our infrastructure. Water shortages cause power outages, creating widespread disaster. Why did we design our society to be so vulnerable to these interconnections? How do we solve the problem, and what will our future look like when we do?