Index

The pagination of this electronic edition does not match the edition from which it was created. To locate a specific passage, please use the search feature of your e-book reader.

Page numbers in italic refer to illustrations

Abel, Niels Henrik 3

absolute proof 21–7, 147

absurdities, mathematical 143, 341

Academy of Sciences, French 119, 238

prize for proving Fermat’s Last Theorem 120–28

ACE (Automatic Computing Engine) 175

Adleman, Leonard 104

Adler, Alfred 2

Agnesi, Maria 109–10, 111, 119

Alexandria 47–9, 57–8, 109

Alexandrian Library 48–9, 57–8

Algarotti, Francesco 112

algorithms 81

amicable numbers 62–3

Anglin, W. S. 77

Annals of Mathematics 303

April fool e-mail 293–5

Arago, François 79

Arakelov, Professor S. 254

Archimedes 48, 112

Aristotle 59

arithmetic algebraic geometrists 254–5

Arithmetica (Diophantus) 42, 57, 58, 60, 61, 62

Clément-Samuel Fermat’s edition 68–9, 70

and elliptic equations 184

Fermat’s marginal notes 62, 66–7, 70, 89

Latin translation 56, 61, 62

and Pythagorean triples 65

axioms 21, 149, 155, 156

of arithmetic 342–3

consistency of 159–60

Babylonians 7–8, 20, 59

Bachet de Méziriac, Claude Gaspar 61–2

Latin translation of Arithmetica 56, 61, 62

Problèmes plaisants et delectables 61

weighing problem 61, 337–8

Barnum, P. T. 138

Bell, Eric Temple 6, 30, 33, 39, 73, 115

Bernoulli family 79–80

birthdays, shared, probability of 44–5

Bombelli, Rafaello 93–4

Bonaparte, Napoleon 117, 124, 232, 234

Bourg-la-Reine 232, 234, 238

Brahmagupta 59

bridges, mathematical 212

Bulletin of the London Mathematical Society 207

calculus 18, 46–7

Cantor, Georg 101–2

Cardano, Girolamo 40–41

Carroll, Lewis 138

Cauchy, Augustin Louis 120–28, 122, 238, 239

chessboard, mutilated, problem of 24–6

Chevalier, Auguste 245, 248

Chudnovsky brothers 51

Churchill, Sir Winston Leonard Spencer 174

cicadas, life-cycles 106–7

Circle Limit IV (Escher) 200, 201

City of God, The (St Augustine) 12

Clarke, Arthur C. 23

clock arithmetic 185–8

closed groups 250–51

Coates, John 180, 182, 183, 189, 211,226,229, 260, 266,270, 284, 303–4

code breaking 103–5, 168, 170–75

Cohen, Paul 162–3

Colussus (computer) 175

commutative law of addition 149

completeness 91–2, 149–50, 160

complex numbers 95, 126

computers

early 175, 176

unable to prove Fermat’s Last Theorem 177–8

unable to prove Taniyama–Shimura conjecture 231

conjectures 72

unifying 305

Constantinople 60

continuum hypothesis 163

contradiction, proof by 49–50, 53–4, 155

Conway, Professor John H. 291

Coolidge, Julian 39

cossists 40

counting numbers 11

Cretan paradox 161

Croton, Italy 9, 27–8

cryptography 103–5, 168, 170–75

crystallography 199, 310

cubic equations 237

Curiosa Mathematica (Dodgson) 138

Cylon 27–8

d’Alembert, Jean Le Rond 96

Dalton, John 22

Darmon, Henri 294, 295

Deals with the Devil 74

defective numbers 11

slightly 13

Descartes, René 41, 42, 63, 249

Deuring 192

Devil and Simon Flagg, The 37, 74

d’Herbinville, Pescheux 243, 247, 248

Diderot, Denis 82–3

differential geometry 254, 256

Diffie, Whitfield 104

Digby, Sir Kenelm 38, 64

Diophantine problems 57

Diophantus of Alexandria 55, 57

riddle of his age 55, 57, 336–7

Diophantus’ Arithmetica Containing Observations by P. de Fermat 68–9, 70

Dirichlet, Johann Peter Gustav Lejeune 116, 127, 188

disorder parameters 140–42

Disquisitiones arithmeticae (Gauss) 115

Dodgson, Reverend Charles 138

domino effect 232

dot conjecture problem 128–9, 339–40

du Motel, Stéphanie-Félicie Poterine 243, 248

Dudeney, Henry 138

Dumas, Alexandre 241–2

E-series 188–9, 204–5, 211, 251–3

École Normale Supérieure 240

École Polytechnique 113–14, 236

economics, and calculus 46

Eddington, Sir Arthur 133

Egyptians, ancient 7–8

Eichler 195

Eiffel Tower 119

Einstein, Albert 17, 18, 110

electricity, and magnetism 204–5

Elements (Euclid) 49, 53, 55, 125

elephant and tortoise fable 160

Elkies, Noam 179, 293–5

elliptic curves 183

elliptic equations 183–5, 187–9, 202

families of 261, 265

Frey’s elliptic equation 216–19, 221–2

and modular forms 202, 204–5, 209–15, 305

Enigma code 168–74

Epimenides 161

Escher, Mauritz 201

Euclid

infinite number of Pythagorian triples proof 65, 338

infinity of primes proof 100–101

and perfect numbers 13

proves that 2 is irrational 53. 334–6

and reductio ad absurdum 49, 53–4

unique factorisation proof 125

Euler, Leonhard 33, 63, 76

attempts to solve Fermat’s Last Theorem 88–9, 90, 96

blindness and death 96–8

forsakes theology 79–80

and Königsberg bridge puzzle 83–5

phases of the moon algorithm 81–2, 97

proves existence of God 82–3

proves network formula 85–8

solves prime number theorem 70–71

Euler’s conjecture 178–9

Evens, Leonard 284

Eves, Howard W. 225

excessive numbers 11

slightly 13–14

factorisation, unique 125–6

Faltings, Gerd 255–6, 257, 300

Fermat, Clément-Samuel 67, 70

Fermat, Pierre de 36

amateur mathematician 39

Arithmetica 61, 62, 65–7

calculus 46–7

career in civil service 37–9, 60–61

death 67

education 37

and elliptic equations 184

and Father Mersenne 41–2

ill with plague 38–9

observations and theorems 70–73

probability theory 43–4, 45–6

reluctant to reveal proofs 42

Fermat’s Last Theorem

challenge of 72–4

computers unable to prove 177–8

Miyaoka’s ‘proof 254–7

partial proofs by computer 177

Germain’s method 115–17

n = 3 (Euler) 90, 96, 99

n = 4 (Fermat) 89–90, 98–9

n = 5 (Dirichlet and Legendre) 116

n = 7 (Lamé) 116

n = irregular prime (Kummer and Mirimanoff) 176–7

publication of 70

and Pythagoras’ equation 32, 65–7

scepticism as to existence of proof 128

simplicity of statement 6, 73

and Taniyama–Shimura conjecture 216–19, 221–3, 266

and undecidability 163–4, 166

why called ‘Last’ 72

Wiles’s proof see Wiles, Andrew

Fermatian triple 66

finite simple groups Flach, Matheus 260

four-colour problem 319–26

four-dimensional shapes 255–6

four-dimensional space 201

Fourier, Jean Baptiste Joseph 239

‘14–15’ puzzle 139–42, 219

fractions 11, 53, 90–91

Frege, Friedrich Ludwig Gottlob 150, 152, 154

Frey, Gerhard 215–19

Frey’s elliptic equation 216–19, 221–2

friendly numbers 62–3

fundamental particles of matter 22–3

fundamental theorem of arithmetic 125

fundamental truths 148–9

Furtwängler, Professor P. 157, 159

Galileo Galilei 39

Galois, Évariste 3, 233

birth 232

duel with d’Herbinville 243, 247, 248

education 234–6, 240

final notes 243, 244, 245, 246, 247, 248

funeral 247–8

and group theory 250–51, 252–3

and quintic equations 238, 239–40, 245, 248–9

revolutionary career 238–9, 240–43

game theory 167–8, 343–4

Gardner, Martin 63, 146

Gauss, Carl Friedrich 114–15, 116, 117–18, 119, 179

geometry 7–8, 322

rubber-sheet 322

Gerbert of Aurillac 60

Germain, Sophie 107, 108, 111–14, 119

career as a physicist 118–19

and Évariste Galois 240–41

relationship with Gauss 117–18, 119

strategy for Fermat’s Last Theorem 115–17

Gibbon, Edward 109

Globe, Le 239

Gödel, Kurt 146, 157, 158, 159

undecidable statements 159–63

Goldbach, Christian 90

Gombaud, Antoine 43–4

Government Code and Cypher School 170–75

gravity, theories of 18, 23

group theory 250–51

Grundgesetze der Arithmetik (Frege) 152, 154

Guardian 272

hammers, harmony of 15

Hardy, G.H. 1, 2–4, 49–50, 165, 166, 179–80, 191

Riemann hypothesis telegrams 73

Hecke algebras 299–300

Hein, Piet 277

Heisenberg, Werner 162

Hellman, Martin 104

Hermite, Charles 3

hieroglyphics 212

Hilbert, David 101–3, 147, 151, 157

and basic axioms 149–50

and Fermat’s Last Theorem 226–7, 268

23 problems 150, 160, 162, 163

Hilbert’s Hotel 102–3

Hippasus 54

History of Mathematics (Montucla) 112

Hodges, Andrew 176

Hypatia 109, 111

hyperbolic space 201

Iamblichus 14–15

Illusie, Luc 278, 281

imaginary numbers 90, 93–6, 125–6

induction, proof by 231–2, 322–3

infinite descent, method of 90–91

infinity 59, 101–3, 177–8

International Congress of Mathematicians Berkeley (1986) 221, 222

Paris (1900) 150

intuition, and probability 44–5

invariants 141, 142, 219

Inventiones Mathematicae 277

irrational numbers 50, 54, 90–92

Iwasawa theory 259, 260, 296, 297–8

Journal de Mathématique pures et appliquées 248

Kanada, Yasumasa 51

Katz, Nick 262, 263–5, 278–80, 281

knot invariants 142, 219

Kolyvagin–Flach method 259–61, 263–5, 279–80, 281, 293, 297–8

Königliche Gesellschaft der Wissenschaften 135–7, 277

Königsberg bridge puzzle 83–5

Kovalevsky, Sonya 111

Kronecker, Leopold 50

Kummer, Ernst Eduard 123–8, 124, 134–5, 176–7

L-series 188

Lagrange, Joseph-Louis 96, 114, 239

Lamé, Gabriel 116, 120–27, 121

Landau, Edmund 110, 143–4

Langlands, Robert 213, 306

Langlands programme 213–14, 254

Last Problem, The (Bell) 6, 30, 33, 73

Le Blanc, Antoine-August 114

see also Germain, Sophie Legendre, Adrien-Marie 116

Leibniz, Gottfried 93

liar’s paradox 161

Libri-Carrucci dalla Sommaja, Count Guglielmo 113, 241

light, nature of 204–5

limping triangles 65

Liouville, Joseph 124–5, 248, 249

Lipman, Joseph 283

Littlewood, John Edensor 179

Lodge, David 177–8

logic, mathematical 148–9

logicians 148–9, 162

loopiness, in rivers 17–18

Loyd Sam 138–42

Loyd’s puzzle see ‘14–15’ puzzle

lyre, tuning strings on 14–17

M-series 201–2, 204–5, 211, 251–3

magnetism, and electricity 204–5

Mahler 314

Mathematical Magic Show (Gardner) 63

mathematical proof 20–21, 23–6

Mathematician’s Apology, A (Hardy) 2–3, 49–50, 166

mathematicians

collaboration amongst 4–5

and compulsion of curiosity 164–6

in India and Arabia 58–60, 93

mathematical life 2–4

require absolute proof 147–8

secretive nature 40–41

self-doubt of 78–9

youthfulness 3

mathematics

contradictory nature of 152, 154–7

foundation for science 26–7

objective subject 28

relationship with science 17, 18

in seventeenth century 39–40

Mathematics of Great Amateurs (Coolidge) 39

Mathematische Annalen 192

Mazur, Barry 211–12, 221, 265, 267, 270, 271, 277

Mersenne, Marin, Father 40–42

Method, The (Heiberg) 48

meticulous librarian, tale of 154–5

Milo 9, 27–8

Mirimanoff, Dimitri 177

Miyaoka, Yoichi 254, 256–7

Miyaoka inequality 256

modular forms 195, 199–202

and elliptic equations 202, 204–5, 209–15

Monde, Le 272

Montucla, Jean-Étienne 112

moon, predicting phases of 81–2

Moore, Professor L. T. 47

Mozans, H.J. 119

musical harmony, principles of 14–17

My Philosophical Development (Russell) 154

natural numbers 91

negative numbers 90–94

network formula 85–8

New York, subway graffiti 257

New York Times 254, 272–3, 282

Newton, Isaac 18, 47, 80, 81

Nixon, Richard Milhous 46–7

Noether, Emmy 110–11

nothingness, concept of 59

number line 92, 94–5, 185–6

numbers

definition of 150, 152

relationships between 11

numerals, Indo-Arab 59–60

Oberwolfach symposium (1984) 215–19, 221

Olbers, Heinrich 115

order and chaos 17

overestimated prime conjecture 179

Paganini, Nicolò 63

parallelism, philosophy of 254, 257

parasites, life-cycles 106–7

particle physics 22–3

Pascal, Blaise 40, 43–4, 45–6

Penrose, Roger 198

Penrose tilings 198–9

People 274, 290–91

perfect numbers 11–13

philosopher, word coined by Pythagoras 10

pi (π) 17–18, 50–53, 166

Picturegoers, The (Lodge) 177–8

Pillow Problems (Dodgson) 138

Pinch, Richard 285

Plato 109

Poges, Arthur 37, 74

Poincaré, Jules Henri 199

points (dice game) 43

polynomials 237

Portraits from Memory (Russell) 160

prime numbers 70–71

almost primes 308

and Fermat’s Last Theorem 99–100

Germain primes 116

infinity of 100–101, 102–3

irregular primes 126–7, 177

practical applications 103–7

333,333,331 not prime 178

twin primes 308

Principia Mathematica (Russell and Whitehead) 156–7

probability 43–7

counter-intuitive 44–5

Problèmes plaisants et delectables (Bachet) 61

puzzles, compendiums of 138

Pythagoras

abhors irrational numbers 50, 54–5

at Croton 9–10, 27–8

death 28

and mathematical proof 26

and musical harmony 14–17

and perfect numbers 12–13

and study of numbers 7

travels 7–8

Pythagoras’ equation 28

‘cubed’ version 30–32

and Fermat’s Last Theorem 32, 65–6

whole number solutions 28–30

Pythagoras’ theorem 6–7, 19–20, 26, 333–4

Pythagorean Brotherhood 9–11, 13, 27–8, 49, 50, 108

Pythagorean triples 28–30, 65, 338

quadratic equations 236–7

quantum physics 162

quartic equations 237

quintic equations 237–8, 239–40, 245, 248–9

Ramanujan, Srinivasa 3

Raspail, François 242–3

rational numbers 11

rearrangement of equations 216

recipes, mathematical 8, 237

reductio ad absurdum 49–50, 53–4

reflectional symmetry 196

Reidemeister, Kurt 142

religion, and probability 46

Reynolds 323

Ribenboim, Paulo 144

Ribet, Ken 220, 229, 267, 270–71, 272, 276, 288–9, 304

Fermat Information Service 282

and significance of Taniyama–Shimura conjecture 221–3

Riemann hypothesis 73

river ratio 17–18

Rivest, Ronald 104

Rosetta stone 212

Rossi, Hugo 46–7

rotational symmetry 195–6

Rubin, Professor Karl 268–9, 300

Russell, Bertrand, 22, 44, 147, 153, 160

Russell’s paradox 152, 154–7

St Augustine (of Hippo) 12

Sam Loyd and his Puzzles: An Autobiographical Review 138

Samos, Greece 8–9

Sarnak, Peter 285–6, 291

Schlichting, Dr F. 144–6

scientific proof 21–2

scientific theories 22–3

scrambling and unscrambling messages 103–5, 168, 170–75

Segre 314

Selmer groups 287

Shamir, Adi 104

Shimura, Goro 193, 191–5, 202, 203, 206

relationship with Taniyama 205, 207, 209

and Taniyama–Shimura conjecture 209–10, 272, 274

Shimura-Taniyama conjecture see

Taniyama–Shimura conjecture Silverman, Bob 284

Sir Isaac Newton Institute, Cambridge 4–5, 266

Sir Isaac Newton’s Philosophy Explain’d for the Use of Ladies (Algarotti) 112

6, perfection of 11–12

Skewes, S. 179–80

Skewes’s number 180

sociable numbers 63–4

Socrates 109

Somerville, Mary 113

square, symmetries of 195–6

square-cube sandwiches 64, 184

square root of one 93

square root of two 53–4, 91–2, 312–4

strings

and particles 23

vibrating 15–17, 16

Suzuki, Misako 207, 208

symmetry 195–202

Taniyama, Yutaka 190, 191–5, 202, 203

death 205, 207–8

influence of 209

and Taniyama–Shimura conjecture 202, 204–5

Taniyama–Shimura conjecture 205, 209–15

and Fermat’s Last Theorem 216–19, 221–3

Wiles and 215, 223, 225–31, 232, 258–61, 263–5, 274, 304

Taniyama-Weil conjecture see

Taniyama–Shimura conjecture

Tartaglia, Niccolò 40–41

Taylor, Richard 285, 292, 293, 296, 297, 299–300

Thales 26

Theano 9–10, 107–8

theorems 21, 71–2

Theory of Games and Economic Behaviour, The (von Neumann) 167

13 Lectures on Fermat’s Last Theorem (Ribenboim) 144

Thomson, J. J. 22

three-body problem 81

threeness 152

tiled surfaces, symmetry of 196–9

Titchmarsh, E. C. 166

Tokyo, international symposium (1955) 203

translational symmetry 196–7

trichotomy, law of 148

truels 167, 343

Turing, Alan Mathison 167–176

uncertainty principle 161–2

undecidability theorems 159–63

von Neumann, John 159, 167

Wagstaff, Samuel S. 176

Wallis, John 38, 42, 64

weighing problem 61, 337–8

Weil, André 160, 210

Weil conjecture see Taniyama–Shimura conjecture Weyl, Hermann 149

Whitehead, Alfred North 156

whole numbers 11

Wiener Kreis (Viennese Circle) 157

Wiles, Andrew xviii, 181, 224, 276, 302

adolescence and Fermat’s Last Theorem 5–6, 33, 77–8

graduate student days 180–81, 183

tackles elliptic equations 183, 184–5, 188, 189

and Taniyama–Shimura conjecture 215, 223, 225–31, 232, 258–61, 263–5, 274

uses Galois’s groups 251–3, 258, 296

announces proof of Fermat’s Last

Theorem 1–2, 5, 33–5, 34, 266–72

reaction of media 272–4

mathematical celebrity 274, 290–91

submits proof for verification 277–9

proof flawed 279–91, 293, 296

proof revised 296–300

proof published 304–5

wins Wolf Prize 308

collects Wolfskehl Prize 308

and the future 309

Wiles, Nada 230, 265, 281, 298–9

Wolf Prize 306

Wolfskehl, Paul 132, 133–5

Wolfskehl Prize 135–7, 143–6, 268

Zagier, Don 254

zero, function of 58–9