9
RACE
Although the existing races of man differ in many respects, as in colour, hair, shape of skull, proportions of the body, &c., yet if their whole structure be taken into consideration they are found to resemble each other closely in a multitude of points. Many of these are of so unimportant or of so singular a nature, that it is extremely improbable that they should have been independently acquired by aboriginally distinct species or races. The same remark holds good with equal or greater force with respect to the numerous points of mental similarity between the most distinct races of man. The American aborigines, Negroes and Europeans are as different from each other in mind as any three races that can be named; yet I was incessantly struck, whilst living with the Fuegians on board the Beagle, with the many little traits of character, shewing how similar their minds were to ours; and so it was with a full-blooded negro with whom I happened once to be intimate.
CHARLES DARWIN, THE DESCENT OF MAN
 
 
 
AFTER THE ANCESTRAL PEOPLE had dispersed from their homeland in northeast Africa, there was no longer a single human population but many. Across the far-flung reaches of the globe, human evolution continued independently. Over the course of many generations the peoples of each continent emerged as different races.
Such an outcome is not so surprising. An array of influences would have pushed each population along a separate evolutionary path. And the one force that could have kept the population the same—a thorough mixing of genes, through intermarriage—could no longer operate once people lived vast distances from each other, and probably in warring tribes who killed as spies anyone found traveling through their territory. The genealogies of the Y chromosome and mitochondrial DNA, whose major branches are still largely confined to different continents, are evidence that throughout the world people have tended overwhelmingly to live, marry and die in the places they were born, at least until modern times.
The genetic differentiation of the human population, into races and ethnicities within races, has long been a matter of both controversy and ignorance. Because of the many evils that racism has caused, from discrimination to genocide, researchers have generally sought to minimize the existence of race. Many social scientists even assert that race is a social concept without biological basis.
Race is not well understood, in part because it has not been regarded as a fit subject for academic study. In many respects, this has been a prudent position. The matter of race seemed of no great scientific interest, was inherently divisive, and had been seriously polluted by a history of racial classifications designed with an agenda of proving one race superior to another.
But two valid scientific reasons for considering the question of race have begun to emerge, and at the same time technical advances in sequencing DNA have at last made it possible to study the still somewhat mysterious nature of race on a scientific basis.
One valid reason for reconsidering race is historical; people of different races may hold in their genetics essential clues to human history since the fragmentation of the ancestral human population 50,000 years ago. Races presumably developed in part in response to the pressures experienced by each population, and the genetic changes involved in race may allow those pressures to be identified. The different branches of the human family have their own histories, which cannot be explored or told until the branches are recognized and their genetics examined.
A second and more practical reason for defining race is medical. Many diseases have a genetic component, which often varies with race or ethnicity. Hemochromatosis, a genetic condition thought to have been spread by the Vikings, affects mostly Europeans. The Pima Indians are particularly susceptible to diabetes, Pacific Islanders to obesity. Crohn’s disease occurs in both Europeans and Japanese but the three genetic variants known to be the cause of the disease in Europeans are not found in Japan, where presumably a different mutation leads to the same symptoms.
People of different races may also differ in their response to drugs. This is sometimes because the enzymes that break down the drugs are being lost at different rates in different races. (The enzymes’ original role was to break down the natural toxins in wild plant foods; since they are no longer needed for that purpose, they are being randomly inactivated by mutations that natural selection no longer sweeps away.) People may also possess different versions of the protein on which a drug is meant to act. The heart drug enalapril reduces blood pressure and the risk of being hospitalized for heart failure in white patients but has little effect in blacks.224
Another drug to which races respond very differently is the new heart failure treatment known as BiDil, a combination of two existing drugs invented by Jay N. Cohn, a cardiologist at the University of Minnesota. On its first trial, in a general population, BiDil didn’t appear to be particularly effective. But Cohn noticed on further analysis that it seemed to have done well in a subset of the population, who turned out to be African Americans. In a new trial, undertaken in African Americans alone, BiDil proved to work so well that the trial had to be stopped in order that the drug could be offered to patients in the comparison group who were not receiving it.225 (BiDil may be effective in people of African ancestry because, as a way of retaining salt in hot climates, they have genetically low levels of a chemical signal that BiDil enhances.)
The emergence of a genetically different pattern of disease and drug response in various populations has touched off a vexed argument about race based medicine. Some physicians contend that consideration of a patient’s race is not or should not be a proper part of medicine. But some geneticists differ strongly, saying that the human genome sequence has now made it possible to tailor diagnosis and treatment to each population’s special needs, and that it would be folly to ignore racial differences if, as in the case of BiDil, race is the key to discovering effective therapies.
Neil Risch, an eminent geneticist now at the University of California, San Francisco, was the first to say in print that the emerging view of human population structure had major points of correspondence with the public conception of race. Risch’s article was sparked by his irritation at the sociologists’ race-is-not-biological dogma surfacing in, of all places, the New England Journal of Medicine, a leading journal of medical research. “Race is a social construct, not a scientific classification,” declared an editorial by Robert S. Schwartz, the journal’s deputy editor.226 Since race is “biologically meaningless,” Schwartz argued, it should not play any part in a physician’s work. A similar editorial, though less absolutist, appeared in the journal Nature Genetics.227
Much of this discussion, Risch wrote in rebuttal of the two editorials, “does not derive from an objective scientific perspective.” (In the determinedly dull parlance of the scientific literature, these are fighting words.) Numerous genetic studies of the human population have found that differences are greatest between continents. These studies, he said, “have recapitulated the classical definition of races based on continental ancestry.” Updating those definitions, Risch and his colleagues suggested that racial groups should be defined on the basis of continent of origin, with ethnicity being used to describe smaller subdivisions within races.
The five continent-based races, in Risch’s view, are as follows:228
Africans are those whose primary ancestry is in sub-Saharan Africa. This includes African Americans and Afro-Caribbeans.
Caucasians are people of western Eurasia—Europeans, Middle Easterners, North Africans and those of the Indian subcontinent (India and Pakistan).
Asians are people of eastern Eurasia (China, Japan, Indochina, the Philippines and Siberia).
Pacific Islanders are Australian aborigines and people of New Guinea, Melanesia and Micronesia.
Native Americans are the original inhabitants of North and South America.
Within each continental race there are gradations of skin color, from the light-skinned Khoisan speakers of southern Africa to the darker-skinned Bantu speakers of western and central Africa, from the lighter-skinned Scandinavians to the darker-skinned peoples of southern India. Skin color is therefore an ambiguous indicator of continental race.
At the boundaries of these continental divisions are several groups formed by intermarriage between the two neighboring races, a condition for which geneticists use the term “admixture.” Ethiopians and Somalis, for instance, are an admixture of Caucasians and Africans. “The existence of such intermediate groups should not, however, overshadow the fact that the greatest genetic structure that exists in the human population occurs at the racial level,” Risch says.
In the United States there are several populations formed by intermarriage between members of two racial groups. African Americans, largely as a result of slavery, have a share of Caucasian genes that ranges from 12% to 23% in various populations, with an average of about 17%. “Despite the admixture, African Americans remain a largely African group, reflecting primarily their African origins from a genetic perspective,” Risch says.
Another group of admixed populations is counted by the U.S. Census Bureau as Hispanic although Hispanic is a linguistic, not a racial, category. Hispanics vary in their admixture in different parts of the country. In the southwestern United States, Hispanics are mostly Mexican Americans, whose ancestry is 39% Native American, 58% Caucasian, and 3% African, according to one recent estimate. East coast Hispanics come mostly from the Caribbean and have a larger proportion of African genes.
The United States is often referred to as a melting pot of races but the rate of mixing is slower than might be assumed. Figures from the 2000 U.S. census indicate that U.S. citizens do not marry each other at random. Racial endogamy (marrying within the racial group) is the rule: 97.6% of respondents reported themselves to be of one race; only 2.4% said they were of more than one race, presumably having parents of different races. Some 75% of Americans declared themselves to be white, that is, Caucasian; 12.3% said they were black or African American; 3.6% were Asian, 1% Native American, and 5.5% of other races.

Differentiation of the Ancestral Human Population

These continental groups reflect the leading roles of geography and endogamy in shaping human races. As long as everyone intermarries, as would doubtless have been the case in the ancestral human population, there is a single genetic pool. New diversity—that is, new alternative versions of genes—accumulates through mutation, and old diversity is eliminated by drift, but these changes occur within a common pool. Any substantial bar to intermarriage, however, whether a mountain range or a religious ban on marrying outsiders, will set up two genetic pools. Since mutation and drift are both random processes, the changes in the two pools will now take place independently. From that point on, the two populations may follow different evolutionary paths. Migration between the two will sharply reduce genetic difference; time and distance will increase it.
The starting point for the emergence of human races would have been the dispersal, within Africa, from the ancestral homeland some 50,000 years ago. Before people left for the world beyond, the human population in Africa had apparently fragmented, doubtless by geographical distance, into several different populations. As already noted, those who left Africa belonged to just one of these populations, those descended from the L3 branch of the mitochondrial DNA tree. They carried away in their genes only a subset of the African genetic diversity, meaning only some of the alleles of each gene. That fact alone set them on a potentially different evolutionary path.
The emigrants eventually spread out over the rest of the globe and themselves fragmented into many even smaller populations. The smaller a population, the greater is the force of genetic drift, which reduces the number of available alleles. Without interbreeding to keep the human gene pool mixed, the populations of each continent or region would over time have become more distinct and less like the others.
The importance of drift in differentiating a static population has recently been recognized in the population of Iceland.229 As mentioned earlier, even though the island has been settled for only 1,000 years, the people in each region have become sufficiently different genetically that by sampling Icelanders’ genome in just 40 different places it is possible to tell which of 11 regions of the island they come from. In the rest of the world, with some 50 times longer for genetic forces to act, and many severe impediments to movement, a much greater degree of differentiation would be expected.
Besides drift, another differentiating force on the world’s separate human populations would have been natural selection. Selection may have pressed particularly hard on the people who left the African homeland, since they would have had to adapt to radically new diet, terrain and climates. A particularly striking example of selection is a recently discovered gene variant that causes pale skin in Caucasians. Almost all African and Asians have the same, ancient form of the gene, which is known at present as SLC24A5. Some 99% or more of Europeans have a new version, that must have arisen after Caucasians and East Asians had become separate populations. The new version presumably became almost universal among Caucasians because the pale skin it conferred was of overwhelming advantage, whether for reasons of health or sexual attractiveness or both. A different gene, yet to be discovered, must give East Asians their pale skin.230
As Darwin suggested, sexual selection, the partly capricious taste of women and men for partners of a certain type, as well as competition between men, may have been a strong selective force, and one that acted somewhat independently in each human population. Disease has certainly influenced the human genome as people in different regions responded to local diseases like malaria. Warfare, an unremitting pressure, surely played a major role in shaping populations. And another powerful molder of human populations would have been climate, especially the adaptations necessary for living in northern latitudes and the violent climatic swings of the late Pleistocene.
Given all these evolutionary forces at work, it is not so surprising that the widely dispersed human populations in various continents acquired their own distinctive variations on the general human theme. This genetic-geographical difference is reflected in the familiar trees drawn on the basis of mitochondrial DNA or the Y chromosome, and on several other kinds of genetic elements. Risch cited some of these studies as proof of the division of the human population into continent based races.
A few months after Risch’s article of 2002, a more comprehensive study by Marcus Feldman of Stanford University reached a very similar conclusion. Instead of examining just a few markers, or sites on the DNA, as many previous studies had done, Feldman and his colleagues looked at 377 sites throughout the genome, a larger and more representative sample. This was done for each of 1,000 people from 52 populations around the world. A computer was then instructed to group the individuals, based on their DNA differences at the 377 sites, into clusters. They fell naturally into 5 clusters, corresponding to their five continents of origin—Africa, western Eurasia (Europe, the Middle East, the Indian subcontinent), East Asia, Oceania and the Americas.231
Feldman and his colleagues did not use the word “race” in their article, referring instead to “structure” and “self-reported population ancestry” (meaning a person’s own identification of their race), but he acknowledged in an interview that the finding essentially confirmed the popular conception of race. “Neil’s article was theoretical and this is the data that backs up what he said,” Feldman commented in reference to Risch’s study.232

Identifying Race by DNA

A consequence of the Risch and Feldman studies is that they provide, for the first time, an objective way of ascertaining an individual’s race. Most previous systems of race classification, with the principal exception of modern craniometry, have been based on characteristics like skin color, which vary in an unsystematic way, and were often designed with a malign agenda such as demonstrating one race’s alleged superiority to others. Not only does the genetic definition of race have no such agenda, but it has nothing directly to do with any physical attribute.
The reason is that the genetic markers used to identify race are not part of the genes or their control regions, so far as is known, and therefore play no part in the physical appearance or behavior of an individual. Presumably they are indirectly correlated with genes that do control the body’s physical makeup, but the connection is indirect and at present unknown.
The DNA markers analyzed by the Feldman team are of the same type as is used in the DNA fingerprinting of forensic cases. At various sites on the human genome the sequence of DNA units goes into a sort of stutter, known as a short tandem repeat because a few units of DNA are repeated several times over, as in AC-AC-AC-AC-AC. For some reason, these stutters tend to confuse the cell’s DNA copying apparatus, which every dozen or so generations may accidentally either add or delete a repeat. The exact number of repeats at a given site is therefore quite variable from one person to another, and so can be made the basis of systems for identifying populations or individuals.233
Only some 3% of the DNA in the genome is devoted to genes; the rest of the DNA is mostly yards of filler material. The short tandem repeats are part of the filler material so do not affect a person’s physical makeup. But some repeats lie close to genes, some of which have evolved in different ways in the various races. By selecting the right repeats, geneticists can find ones that are quite diagnostic of race, even though at present they have little idea which genes it is that give people of different races their different appearance.
Risch calculated that if the sites with short tandem repeats were chosen entirely at random, analysis of about 100 sites should suffice to say which of the five major races a person comes from. But as few as 30 sites would be enough if the sites were specially chosen so as to be diagnostic of race. Many hundreds of markers would be needed to distinguish, within a race, between two populations or ethnicities, Risch estimated.
Sets of these sites, known as Ancestry Informative Markers, can be used to identify not just an individual’s race but the racial origin of individual sections of a person’s genome. A company called DNAPrint Genomics has already started offering a test to assess people’s continent of origin and, if of mixed race, the proportions of ancestry due to different races.234 The test is based on a set of markers identified by Mark Shriver, a geneticist at Pennsylvania State University. It has already proved useful in police inquiries by identifying the race of a suspected serial killer from tissue collected at a crime scene. In June 2003 police believed that a serial killer in Louisiana was white, but were informed otherwise by DNAPrint Genomics, whose test showed the killer’s ancestry was 85% African and 15% American Indian; they then arrested a suspect who was black.235 The reliability of the test has not yet been established, but if it helps police identify a suspect, the suspect’s DNA can then be compared with the crime scene DNA in the usual way.
Feldman and his colleagues say they needed varying numbers of markers—in this case sites with tandem repeats—to identify a person’s continent of origin, depending on the genetic variability of the race in question. Native Americans could be assigned to their continent of origin with just 100 markers, whereas almost all 377 markers were required to identify Middle Easterners. This is because Native Americans are all descended from their Siberian founders whereas Middle Easterners are a more complex genetic blend; they are mostly Caucasian but some, like the Bedouin, have an African contribution.
Feldman’s method gives a glimpse of how deeply genetic markers may be able to reach into population history. The computer program used to sort the genome samples into continental clusters could also split an individual’s genome into different parts if the person was of mixed ancestry. People from the Hazara and Uighur of Central Asia, long a crossroads between east and west, emerged with genomes roughly half Caucasian and half East Asian in origin. The Surui, a fairly isolated people of Brazil, have genomes that are entirely American (in terms of the computer program’s 5 racial clusters), whereas Mayan genomes are American with a strong dash of European and East Asian admixture.
With extra markers, and ones chosen to be more diagnostic of geographical origins, it should be possible to explore a population’s ancestry and history in a much more detailed way. For geneticists, the essence of race is not politics but history: race defines through which branch of the human family tree people trace their descent.

Scientific Attitudes to Race

Researchers’ attitude to race has swung through a wide arc in the last century and the new view developed by the work of Risch, Feldman and others has probably not yet become the consensus view.
In the nineteenth century, as European explorers became acquainted with the peoples of other continents who seemed so different from themselves, a serious debate arose as to whether these strange foreigners should be considered as belonging to separate species. Darwin, with his usual unerring insight, rejected the idea in his 1871 book The Descent of Man, arguing there was only one human species, though divided into subspecies or races. The one species must have had a single origin, which Darwin pre sciently placed in Africa, the continent with the greatest diversity of great apes. That human population, in his view, was later fragmented into different races by geographical isolation, followed by a differentiation that in Darwin’s view was principally driven by sexual selection, the preference by women for men of a certain type.
Since Darwin’s time, greater awareness has developed of the dangers of race in light of the many harms and injustices committed by people of one race against those of another. Many academic researchers, including geneticists, have sought to minimize the extent of biological variation within the human family. What is still one of the most influential positions on race is a statement made in 1972 by the geneticist Richard Lewontin.
Lewontin measured a property of proteins (DNA sequencing was not then available) taken from people of different races, and computed a standard measure of variation known as Wright’s fixation index or FST. The idea is to measure some character that varies in members of a population and assess how much of the variation arises because two subpopulations differ from each other in that character. The index, in other words, reflects how much of the variation is general and how much is specific to the subpopulations.
Lewontin’s value for FST came out at 6.3%, meaning that of all the variability in the human population, at least as reflected in the 17 proteins he had measured, only 6.3% lay between races, while a further 8.3% was found to lie between the ethnic groups within races. “Of all human variation, 85% is between individual people within a nation or tribe,” Lewontin concluded. 236
This finding is perfectly in line with the expectation that most of the genetic variation in each race would be the same as that of the ancestral human gene pool from which it was drawn. But the question then arose as to whether the extent of the difference between races was large or small. Lewontin argued that the difference was so trivial that racial classification had no genetic significance or justification.
Many biologists have chosen to go along with his interpretation, and this position has been followed, even taken to extremes, by the major social science organizations in the United States. According to the American Sociological Association, race apparently does not even have a biological foundation, since it is a “social construct.” The association’s official statement on race warns that “Although racial categories are legitimate subjects of empirical sociological investigation, it is important to recognize the danger of contributing to the popular conception of race as biological.”237
The American Anthropological Association also dismisses the idea that biological differences can be recognized between races: “In the United States both scholars and the general public have been conditioned to viewing human races as natural and separate divisions within the human species based on visible physical differences,” the AAA statement says. But since physical traits vary smoothly across the globe, and are not correlated with one another, “these facts render any attempt to establish lines of division among biological populations both arbitrary and subjective.”238
But people can now be objectively assigned to their continent of origin, in other words to their race, by genetic markers such as those used by Feldman. And Lewontin’s characterization of the differences he had found as trivial was as much a political as a scientific opinion. The degree of differentiation he had measured in the human population was similar to other estimates that put the value of global FST as between 10 and 15%. Sewall Wright, one of the three founders of population genetics and the inventor of the FST measure, commented that “if racial differences this large were seen in another species, they would be called subspecies.”239 Wright specified that an FST of 5 to 15% in any population of organisms constituted “moderate” genetic differentiation, and 15 to 25% should be considered “great” genetic differentiation.240
But whether an FST of 10 to 15% represents a large or small degree of differentiation is probably not very relevant to the question of whether or not human races can be identified. The reason is that such measures of FST have captured something called neutral variation, which is probably not the kind that underlies most racial differences.
Neutral variation refers to mutations that don’t affect the organism one way or another. Evolution doesn’t care about such changes, and the frequencies of such alleles in a population will vary randomly under genetic drift. Most common variation is neutral, and most measures of FST are likely to sample common—that is, neutral—variation.
But evolution pays great heed to mutations that make a significant change to a gene and its protein. If the change is adverse, the mutations are ruthlessly eliminated because the affected individual either dies or fails to reproduce. If the change enhances the individual’s reproductive success, the mutation is selected for and becomes commoner in a population. These two kinds of selection, one negative and the other positive, are the two faces of natural selection. Biologists do not yet understand what genes need to be changed to make one species into two subspecies. However, it seems that the alleles involved in differentiating the human population are likely to be of the selected kind, not the neutral kind.
Versions of the two brain genes that evolved within the last 40,000 years show just this pattern. As mentioned in chapter 5, an allele of one, known as microcephalin, appeared some 37,000 years ago and is now widespread among Caucasians and East Asians but is much less common in sub-Saharan Africans. The FST for this allele between sub-Saharans and the others is 48% or 0.48, “which indicates strong differentiation and is significantly higher than the genome average of 0.12,” writes Bruce Lahn of the University of Chicago, who discovered the allele.241
A new version of another gene, ASPM, arose some 6,000 years ago in Caucasians, 44% of whom now carry this allele. The allele is less common among East Asians and rare to nonexistent in sub-Saharan Africans. The FST for the allele between Caucasians and everyone else is 0.29.242 There doubtless exist alleles of other brain-related genes, yet to be discovered, that are more common in East Asians or sub-Saharans and rare among Caucasians.
Most of the diversity in human skin color, for example, exists between populations, not within them. The FST for skin color is 88%, according to a study by John Relethford of the State University of New York at Oneonta.243 Skin color is heavily correlated with latitude as well as race, but clearly does not follow the pattern of the neutral genes. Henry Harpending and Alan Rogers suggest that “other visible traits that most humans notice are more like skin color than they are like neutral traits”—in other words that most of the physical characteristics on which people judge a person’s race are likely to be selected, just as would be expected if sexual selection has been the major force differentiating the human population.244
It is a few selected genes, not the many neutral ones, that may account for the differences between continental races. Substantial evidence for this idea has now emerged from a genomewide survey by Jonathan Pritchard of the University of Chicago. Devising a test to identify genes under recent selective pressure, he found roughly 200 such genes in Africans, in East Asians, and in Europeans. Each race’s set of selected genes overlapped very little with those of other races, just as would be expected if the populations on each continent had adapted independently to evolutionary pressures.363

Genotype and Phenotype among Races

Even if geneticists can see a difference between races at the level of DNA, what practical difference does that make at the level of the physical person? Biologists make a useful distinction between the genotype and phenotype of an organism. The genotype is simply the genome or hereditary information; phenotype is the physical creature that is generated from the genotype.
Because so much of the genome is nonworking DNA that does not code for genes, it is possible for genotype to vary without causing much change in phenotype. The Icelanders whose genotype can be matched to the island’s 11 regions probably don’t look any different from each other (although a survey is under way to see if they have a slightly different pattern of disease).
The work of Risch and Feldman showing that people can be genetically assigned to their continent of origin—that is, race—is based on genotype, and does not in itself indicate how much people of different racial genotypes might differ in phenotype. However, the sites on the genome that they examined move around during recombination (the shuffling of blocks of DNA that occurs between generations) in the same way that genes do. So some of these sites, especially those that lie close to genes, will be proxies for the genes themselves.
Thus the fact that people can be assigned to racial groups based on sampling just a few hundred sites in their genome suggests that quite a large number of genes may also vary between races and that so may the phenotype influenced by such genes. Races certainly vary in physical appearance. Nor are the differences just skin deep; there are also variations in susceptibility to disease and in the response to drugs.
The overarching similarity of all races is just what would be expected, given that the ancestral human population existed only 50,000 years ago, and given that human nature must to a great extent have been molded before the ancestral dispersal, since all its principal features are found universally. Proof of the continuing unity of the human family is that people of different races have no difficulty in interbreeding, and that the members of any one culture can, absent discrimination, function in any other.
But the existence of considerable variation between races should not be any surprise either, given that the human family has long been split into separate branches, each of which has evolved independently for up to 50,000 years or more, buffeted in different directions by the random forces of genetic drift and the selective pressures of different climates, diseases and societies.
Study of racial variation is not yet a scholarly pursuit, except in the area of medicine, and even there is not without controversy. Physicians who study racial disparities in medicine are well aware that many social attributes, such as poverty or lesser access to health care, track along with race. These factors, just as often as genetics, may be the explanation why African Americans, say, suffer a greater burden of certain diseases than white patients. But to ignore race altogether, as some argue should be done, would blind researchers to many findings of value, both social and genetic. A physician cannot tell if his black patients receive worse health care than whites unless he has first noted which race they belong to.
As for genetic contributions, BiDil would never have been discovered if Jay Cohn had not analyzed the response of African American patients to the drug. The discovery of an important drug for an underserved community might seem unalloyed good news. Nonetheless, some African Americans greeted BiDil with a distinct lack of enthusiasm because of a wider concern. These spokesmen fear that if African Americans are defined genetically, even for the benign purpose of medicine, the public may associate them with less reputable attributes, such as propensity to crime. “If you think in terms of taxonomies of race, you will make the dangerous conclusion that race will explain violence,” Troy Duster, a sociologist at New York University, said in objecting to race-based medicine.245
Understandably enough, any suggestion of a genetic basis for racial differences can engender strong passions. Disputes have long swirled around intelligence tests, which at present show differences between the various races of the United States. There is broad overlap between all populations but in terms of average score, Asian Americans come out somewhat higher than people of European ancestry, while African Americans score lower. While this fact is generally accepted, there is little agreement as to the reason. Some psychologists claim that IQ tests measure general intelligence, which they believe is in substantial degree inherited, and that the tests predict performance in later life. Others see the tests as evidence only of differences in education and other cultural advantages, and deny that any genetic explanation is applicable. This dispute, whose merits lie beyond the scope of this book, has long made the study of race controversial.
A less vexed instance of racial differences is provided by sports records. Some 95% of the top times in sprinting are held by West Africans, or African Americans who trace their ancestry to West Africa, according to Jon Entine. Entine, a filmmaker, made a documentary about black dominance of sport and then wrote a book, Taboo, so called because of the obloquy rained down on anyone who suggests a genetic basis for any aspect of race. West Africans’ dominance of sprinting is so complete that “all of the thirty-two finalists in the last four Olympic men’s 100-meter races are of West African descent,” Entine writes.246
In middle distances, of 5,000 to 10,000 meters, it is not West Africans but men from Kenya in East Africa who dominate. Kenyans hold the top 60 world times in the 3,000-meter steeplechase and more than half the top times in the 5,000 and 10,000 meters. Within Kenya, most of these winning runners are Kalenjin speakers of the Great Rift Valley region, particularly a small population called the Nandi. The Nandi, who comprise less than 2% of Kenya’s population, have produced half of Kenya’s Kalenjin-speaking athletes and 20% of all the winners of major international distance running events.247
Interestingly, the Kenyans have tried to extend their domination of the middle distance to the sprint, but with serious lack of success: the best Kenyan time in the 100 meter sprint ranks about 5,000th on the all-time list.248 This suggests they possess some quality of specific relevance to middle-distance running.
Entine notes the many social factors that have helped determine dominance in sports, at least in the past. Basketball in the 1930s was dominated by Jewish players, and the sportswriters who speculated about some Jewish genetic suitability for the game were way off base. But many sports, particularly track events, are now much more open to all comers, regardless of race or social background. Despite the hard training and other factors that make a great athlete, there is likely to be some genetic component behind the spectacular dominance of West African athletes in sprinting and East Africans in middle distance events, in Entine’s view. John Manners, an author of books on Kenyan runners, also favors a genetic explanation for the prowess of the Kalenjin athletes whose record, he asserts, “marks the greatest geographical concentration of achievement in the annals of sport.”249 The Kalenjin, martial Nilotic pastoralists from Ethiopia, have lived for centuries at altitudes of 2,000 meters or more and marry mostly among themselves. They have a particular custom that could have acted as a genetic selection mechanism favoring strong runners, Manners writes. It has to do with cattle-raiding, of which the Kalenjin were for a long time the leading practitioners.
While some might call that theft, the Kalenjin regarded their actions as repossession of property that was theirs by divine right but had inadvertently fallen into others’ hands. The repossession procedure often required journeys of more than 100 miles so that the livestock could be far away before their ex-custodians realized their loss. “The better a young man was at raiding—in large part, a function of his speed and endurance—the more cattle he accumulated,” Manners writes. “And since cattle were what a prospective husband needed to pay for a bride, the more a young man had, the more wives he could buy, and the more children he was likely to father. It is not hard to imagine that such a reproductive advantage might cause a significant shift in a group’s genetic makeup over the course of a few centuries.”250 As Manners emphasizes, this is a speculation, not a proof, as to how the Kalenjin got to be so fleet of foot.
International sports events are an effective way of showing up even slight differences between races, and between ethnic groups within races, because of the way that physical characteristics tend to be distributed in a population. Most members of a population are of average height, very few are of dwarf or giant stature. If one population is very slightly taller than another, the difference might hardly be noticeable in comparing average members of each population. But if you hold a competition for the ten tallest people, all 10 may come from the slightly taller population since in this case it is the extreme, not the average, that is being compared.
The fact that different races or ethnic groups tend to excel at different sports—Africans at track, Chinese at ping pong, Europeans at weight-lifting—is not proof in itself of any genetic component but just a starting point that hints at possible genes to look for.

Genes versus Geography

Even though the individual members of every race may be much the same, human societies differ considerably in their levels of technology and organization. Some societies, like those of New Guinea, are just emerging from Stone Age cultures, while others, like those of Finland or Taiwan, are highly educated and lead in manufacturing sophisticated goods for the global economy. Is the difference solely because New Guineans were dealt a bad hand in terms of geography and resources, or could there be some genetic difference, maybe in the nature of sociality, that helped keep New Guineans and others in the Stone Age while propelling other peoples on a quite different trajectory?
Jared Diamond of the University of California, Los Angeles, has advocated a geographical answer to this question. In his book Guns, Germs, and Steel he argues that because more domesticatable species of plant and animal existed in Eurasia, agriculture got started there first, giving Europeans a head start in economic development. Accustomed to living in crowded environments, Europeans built up immunity to many diseases, including those contracted from their domestic animals, such as influenza, measles and smallpox, and these diseases were devastating to nonurban peoples on other continents.
In Diamond’s view, it was the economic head start and the germs, not any inherent difference in abilities, that enabled Europeans to conquer other peoples. “History,” he says, “followed different courses for different peoples because of differences among peoples’ environments, not because of biological differences among peoples themselves.”251
As Diamond explains, having spent many years studying the birds of New Guinea, he came to know the inhabitants well and was impressed with their evident intelligence. This led him to doubt the findings of the IQ testers in America, where “numerous white American psychologists have been trying for decades to demonstrate that black Americans of African origins are innately less intelligent than white Americans of European origins.”
In fact, New Guineans, in Diamond’s view, are probably more intelligent than Westerners, and the reason, he says, is genetic. The chief selective pressure on Westerners was the need to acquire resistance to the disease rampant in their crowded communities, whereas in New Guinea, where the chief cause of death is war, murder or starvation, one needed one’s wits to survive: “Natural selection promoting genes for intelligence has probably been far more ruthless in New Guinea than in more densely populated, politically complex societies, where natural selection for body chemistry [that is, immunity to disease] was instead more potent,” Diamond explains. And hence, “in mental ability New Guineans are probably genetically superior to Westerners.”
But if the New Guineans had the smarts, why was it the dumber, disease-ridden Westerners who figured out how to escape from the deadening cycle of Stone Age tribalism and perpetual warfare, a problem the New Guineans never cracked? Because Westerners lucked out in their geography, Diamond argues. Eurasia had a greater absolute number of plant and animal species and more of them proved suitable for domestication. Because species are adapted to climatic zones, domesticated crop plants and animals could be shared along lines of latitude, enabling Europeans to assemble packages of agricultural species and get a head start on the farming revolution. This advantage, slight enough 10,000 years ago, steadily accumulated to the point that by AD 1500 great civilizations had arisen in both halves of the Eurasian land mass, while much of the rest of the world had yet to clamber out of tribalism and illiteracy.
The Chinese then lost their technological edge, also for a geographical reason, in Diamond’s view: the connectedness of the Chinese mainland allowed one ruler to dominate and make irreversible errors, like destroying the Chinese fleet, whereas in Europe, with its balkanization and competing statelets, diversity thrived and the best idea had a better chance of winning out. By colonial times, this left Europeans as the winners, thanks to their superior geography.
Single cause explanations generally make historians roll their eyes but the boldness and ingenuity of Diamond’s thesis certainly puts geography more on the map than it was before. Yet does genetics have no role at all in shaping human history?
Many readers who like the political implications of Diamond’s thesis—that Western dominance is an accident of geography and therefore no race is better than any other—may skip over his premise of New Guinean genetic superiority. But if New Guineans adapted genetically by developing the intellectual skills to survive in their particular environment, as Diamond says is the case, why should not other populations have done exactly the same?
In attributing western advance solely to geography, while tacitly excluding the genetic explanation invoked for the New Guineans, Diamond focuses on the development of agriculture. But, as noted in chapter 7, archaeologists now believe that in the Near East sedentism came long before agriculture: first people settled down, abandoning the foraging way of life. Then they took to cultivating wild plants. Then, probably by accident, they developed domestic varieties of plant and animal species. The critical step was not domestication, but sedentism. This finding would seem to undercut an important part of Diamond’s case because, unlike the case with agriculture, it’s harder to see any geographical reason why sedentism should have risen in one society and not another. Given that the human form was undergoing another genetically driven change around this time, the gracilization of the skull and skeleton, a genetic explanation for sedentism would not be so implausible. People such as the Natufians perhaps responded to their environment with a different kind of sociality that enabled them to abandon the foraging way of life and settle down in fixed communities.
If sedentism was indeed prompted by an evolutionary change, it was one that may have occurred independently in different populations, as has happened with properties like pygmy stature, lactose tolerance and doubtless many others.
Such genetic adaptations, if they occurred, could not spread through the world’s population like wildfire, since it can take many generations for gene frequencies in a population to change. Instead, they would take place at different rates in different populations. This wide spread in start times for the forager-settler transition could help explain why human societies throughout the world have attained such different levels of development.

Emergence of Human Races

When did today’s continental-based races start to emerge? Presumably people started adapting independently to different environments as soon as the ancestral population dispersed 50,000 years ago. Yet skull types throughout the world remained much the same throughout the Upper Paleolithic period, and it seems that those typical of today’s races did not appear until about 12,000 to 10,000 years ago.252 The Han Chinese originated from a small population that emerged around that time and then expanded very quickly, presumably at the expense of its neighbors. The same appears to be true of Caucasians (the peoples of Europe, India and the Near East), whose skulls resemble those of earlier Europeans, as if derived from them, but also differ from them. These earlier Europeans have larger skulls, with heavier jaws and brow ridges, and “should probably not be lumped with living Europeans in a ‘Caucasoid’ race,” says the paleoanthropoligist Richard Klein.
It is tempting to see the origin of today’s Caucasians and East Asians in the people who lived in the northern latitudes of Europe and Siberia respectively some 20,000 years ago. As mentioned earlier, these populations would have been driven southward by the advancing glaciers of the Last Glacial Maximum. Since all but the southern fringes of the Eurasian continent were converted to polar desert or tundra, the heartlands of both Europe and Asia would probably have been depopulated (see figure 6.2).
When the glaciers began their final retreat 15,000 years ago, the former northerners in both halves of the Eurasian continent would have recolo nized the abandoned latitudes. In this way both Europe and East Asia would have been dominated by peoples originating from groups that 5,000 years earlier had been small populations at some northern extremity of the human population range.
A third continental race, that of American Indians, is descended from a few groups of Siberian ancestors, so also represents the expansion to continental size of a small population.
Europeans, East Asians and American Indians seem therefore to be three comparatively young races, and the two other continental races, Aus tralasians and Africans, may be somewhat older in the genealogical sense (that is, have longer branches to the common origin). But Africans and Australian aborigines have had just as long to evolve and, aside from having retained darker skins, may be as different from the ancestral people as are the three races that emerged in northern latitudes.
Races arise from the fact that after a population splits, its two halves continue to evolve but along independent paths. These population splits leave their mark not only in the genes but also in language. Like the genes, language is in constant flux, and diverges into daughter tongues after a population goes separate ways. At the time of the ancestral population, there was a human family that spoke, perhaps, a single mother tongue. Having considered the division of the human family into races, it is now time to look at the parallel fragmentation that has occurred in language.