INDEX

Andromeda Galaxy, 59, 68–9

    collision with Milky Way galaxy, 80, 112

Angels and Devils (Escher), 66, 67

Antimatter, 53, 93–7

    energy released on annihilation, 94

    matter-antimatter asymmetry, 94–7, 136, 154

Arrow of Time see Time

Asteroids, 17–18, 21

Atomic structure, 6, 24, 30–1, 48–50, 54–5

    electrons, 6, 24, 30–1, 52

    isotopes, 49

    neutrons, 49, 52–6

    nuclei, 6, 49–50, 53–4, 56

    protons, 24, 30–1, 49–50, 52–6

    strong (nuclear) interaction, 53–4, 58, 134, 135–6, 159

Atoms

    contribution to Ω, 82–3, 88–9, 140, 167

    created in early Big Bang, 74

    created in supernovae explosions, 48–9, 50–1

    decay rate, 96, 113

    heavier elements less abundant in older stars, 51–2

    minority constituent of universe, 93–4, 122

    periodic table, 49–50, 56

    quantum effects, 6

    stellar transmutation to heavier elements, 10, 49–51

    uniform throughout universe, 12, 24–5, 47

Axions, 91

Barbour, Julian, 154

Bekenstein, Jacob, 162–3

Beryllium, 56

Big Bang, 10, 88

    conversion of photons to neutrinos, 89

    cosmic repulsion in early stages, 138–9

    deuterium, 78, 88

    first millisecond, 131–2, 135, 136, 138, 140–1, 167, 175

    helium created from hydrogen, 77–9, 140–1, 154

    matter-antimatter asymmetry, 94–7, 154

    multiple occurrences, 166–7, 174

    non-uniform densities, 118–19, 197

    ‘ripples’ in early stages, 62–3, 117–19, 119–20, 126–9, 141–2, 167

    temperature drop, 74–5, 78, 119

    theory, 11–12, 74–6, 130–3, 136–7

    see also Microwave background radiation

Biological evolution, 19–20, 128

    timescale, 2, 9–10, 34

Biosphere, 18–19, 25–6

    development of intelligence, 21

    elements formed in supernovae, 48–9

    evolution of, 11, 20–1

Black body radiation, 73

Black holes, 3, 39–44, 128, 155

    at atomic scale (primordial), 44, 91, 113, 144, 162, 171

    at galactic centres, 40, 43, 59

    binary systems with ordinary stars, 39–44

    collision and coalescence, 142

    constituent of dark matter, 88, 91

    decay rate, 113

    developed from superstars, 125

    Einstein’s hostility to, 110–11

    entropy, 162

    enveloped by surface, 41–2

    gamma-ray bursts, 40

    in quasars, 125

    radiation, 113, 162

    size proportional to mass, 40

    spinning, 40, 41–2, 125–6

    standardized objects, 40, 162

    temperature, 162

    time dilation, 41

Bruno, Giordano, 22

Carbon, 10, 49–50, 51

    isotopes of, 49

    resonance in nucleus, 56

    transmutation to oxygen, 55–6, 57

Cosmic Background Explorer Satellite (COBE), 73–4, 120, 130

Cosmic environment

    microwave background, 72–4, 90, 109–10

    sensitivity to cosmic numbers, 25–6, 54–7

    uniformity of, 11–12, 24, 47

Cosmic numbers

    fine tuning, 4, 25–6, 54–7, 97–101, 126–9, 137, 164–79

    see also individual numbers

Cosmic numbers (N, ε, Ω λ, Q D), 2–4

Cosmic rays, 90

Cronin, James, 95

Cubic Space Division (Escher), 64–5, 65

D (spatial dimensions), 3–4, 149–51, 159–62

    inverse-cube law implied by four dimensions, 150

    see also Space; Space-time; Superstring theories; Time

Dark matter, 79, 82–93, 104, 112, 127–8

    black holes, 88, 91, 92

    brown dwarfs, 86–8, 92, 117

    composition, 86–93

    deflection of light, 85

    detected in galactic clusters, 85

    exotic particles, 89–91, 92

    gravitational pull of, 83–5, 107

    main contributor to Ω, 82–3, 89, 140

    major constituent of universe, 93, 102, 121–3

    neutrinos, 89–90

    non-radiating, 86

Deuterium (heavy hydrogen), 54, 93

    abundance, 125, 131, 137

    atomic structure, 78

    created in Big Bang, 78, 88

    detected in distant galaxies, 88–9

Dinosaurs, exterminated by asteroid impact, 17, 21

Doppler effect, 16–17, 17, 63, 64

    gas orbiting black holes, 126

    redshift, 102–5, 111, 114, 125

    stars orbiting barycentre, 16–17

ε (nuclear fusion efficiency), 2, 52–7, 58, 94, 99, 170

    effects of differing values, 52–7

Earth

    age of, 45

    asteroid impacts, 17–18, 21

    atmosphere, 18–19

    destruction by expanding Sun, 46, 80

Eddington, Arthur, 33, 85

Einstein, Albert

    cosmological constant (λ), 108–10

    E=mc2 (rest-mass energy), 38, 52, 94

    hostile to concept of black holes, 110–11

    search for unification of gravity and electromagnetism, 134

    special theory of relativity, 69

    theory of general relativity, 35–6, 39, 41, 42, 107, 110, 113, 125–6, 161–2

Entropy, 116, 162

Faraday, Michael, 133–4, 134, 143, 150

Feynman, Richard, 25, 163, 177

Fitch, Val, 95

Fractals, 60–2

Friedman, Jerome, 135

Galactic and stellar spectra, redshifted, 16, 17, 63–6, 69

Galaxies

    Andromeda, 59, 68–9

    black holes at centre of 40, 43, 59

    cannibalism, 103, 125

    clusters seeded by ‘ripples’ in early Big Bang, 62–3, 126–9, 167

    clusters and superclusters, 59, 60–2, 84, 118, 123, 129, 141–2, 144, 167

    collisions, 59–60, 80

    dark matter, 83–5

    disc shaped, 59

    distant galaxies viewed in early evolutionary stages, 67–9, 103, 111, 123–5, 125, 175

    elliptical, 59, 60

    evolution, 67–9, 71, 103, 122–3, 124

    gravitational lenses, 85–6

    Local Group, 59, 60, 112–14

    Virgo Cluster, 59, 60–1

    see also Big Bang; Stars; Stellar evolution

Galileo, 29–30, 173–1

Gamma-ray bursts, 40

Gammow, George, 77, 108

Gell-Mann, Murray, 135

Glashow, Sheldon, 134

Gravitational lensing

    brown dwarfs revealed by, 86–7, 92

    dark matter in galactic clusters, 85–6

Gravity, 27–44, 84–5, 133–4, 136

    amplification of small primordial density differences, 117–19, 153–4

    balanced by internal pressure of stellar cores, 28, 46, 116

    and black holes, 38–44

    effect on light, 35–8, 39, 41

    effects on animal sizes, 29–30, 34

    effects of differing values of N, 2, 33–4, 170–1

    escape velocities, 38

    gravitational potential energy, 145

    gravitational radiation, 112–13

    indistinguishable from accelerated motion, 42

    and neutron stars, 38–9

    Newton’s inverse-square law, 12, 27–8, 84, 118, 150–1

    pull exerted by dark matter, 83–5, 107

    ratio to atomic electric charges (N), 2, 30–1, 33–4

    self-gravity, 32

    singularities, 42, 43

    strength of, 30, 33–5, 99, 118, 144, 158, 169–70

    tidal forces exerted by black holes, 42–3

    time dilation near large masses, 38–9, 41

    in virtual universes (computer simulations), 121–3, 122–3, 124, 125–6, 127

Guth, Alan, 138, 143

Hawking, Stephen, 143, 146, 159, 162–3

Helium

    atomic structure, 54

    produced from hydrogen in Big Bang, 77–9, 154

    product of hydrogen fusion, 45–6, 49, 51–2, 52–4

    transmutation to heavier elements, 53, 55–6

    uniform abundance in primordial objects, 77, 130, 137

Hoyle, Fred, 55–6, 75–6, 77

Hubble, Edwin, 64, 72, 105

Hubble Space Telescope (HST), 68, 70–1, 85

Hydrogen

    atomic structure, 24, 30–1

    conversion to heavier elements, 2, 10, 45–6, 49–50, 76–9

    sensitivity to value of ε, 54

    Stellar fuel, 49–50, 53–5

    transmutation to helium, 45–6

The Inflationary Universe (Guth), 138

Inflationary universe theory, 137–48, 167

    cosmic repulsion in very early Big Bang, 138–9

    exponential expansion, 138–9

    flat universe, 140, 167, 171

    gravitational waves, 142

new inflationary episodes within black holes, 144, 147

    size of universe, 146–7

    tests of theory, 140–2

Intelligence, extraterrestrial

    assumed rarity of, 21

    common culture, 25

    communications based on ratios of physical constants, 24–5

    methods of detection, 23

    search for (SETI), 23–4

Iron, 50–1, 54, 56–7, 76

Jupiter

    composition, 51–2

    effects of self-gravity, 32–3

    possibility of life on moons, 20

    Sun-Jupiter system rotation about barycentre, 15–16

Kaluza, Theodor, 159–60

Kelvin, William Thomson, 1st Baron Kelvin, 45

Kendall, Henry, 135

Kerr, Roy, 41

Kirschner, Robert, 61

Klein, Oscar, 159–60

λ (lambda), 3, 112, 140

    control of expansion (cosmic repulsion), 2, 112

    cosmological constant, 108

    decay, 171–2

    effects of different values, 3, 111–14, 113–14, 171–2, 174

    latent energy of space vacuum, 108–10, 145, 167, 169–70, 169–72

    non-zero value, 109–10, 113–14, 127, 172–3

Large Hadron Collider, 133

Linde, Andrei, 138, 147, 151, 168

Lisa project (Laser Interferometric Space Array), 142

Lowell, Percival, 22–3

Mandelbrot set, 164, 165

Mars

    canals, 22–3

    search for life, 20

Maxwell, James Clark, 133–4, 143

Mayor, Michel, 16

Microwave Anisotropy Probe (MAP), 120, 141

Microwave background radiation, 72–4, 90, 155

    black body spectrum, 73, 120–1, 130

    non-repetitive distribution, 155

    non-uniform distribution, 109–10, 119–21, 131

    residue of Big Bang, 73, 109

Milky Way, 59, 80, 112

Monopoles, magnetic, 143–4

Multiverses, 13, 26, 147–8, 166–79

    mutable laws of physics, 169

    variations in properties, 169, 174

N (gravitational ratio), 2, 30–1, 33–5, 44, 99, 144, 157, 158, 169, 170

Neutrinos, 53, 89, 131, 134

    Kamiokande experiment, 90

    non-zero mass, 90, 92, 131

    possible dark matter component, 89–90, 92

    ratio to atoms, 89

Neutron stars, 38–9

Newton, Sir Isaac, 12, 35–6, 150, 178

    inverse-square law of gravity, 27–8, 38–9, 47, 84, 118, 173

Nuclear fusion, 49–50, 52–4

    efficiency (ε), 52–7

    rest-mass energy, 52–3

Ω (omega; ratio of actual to critical density of matter), 82, 98, 112, 169, 171, 172

    effects of deviation from value of unity, 2–3, 97–101, 112, 128–9

    equal to unity, 140

    exotic particles, 88–9, 93

    fine tuning, 137

    Supernova cosmology project, 106

Ouraborus, 8–9, 9, 12, 178

Oxygen, 10, 19–20, 50–1, 55–6, 57

Paley, William, 150–1, 166

Particle physics

    antiparticles, 94

    asymmetric particle decay (neutral kaon K°), 95

    electromagnetism, linked to weak force, 134–5, 135, 159

    electrons, 6, 24, 30–1, 52

    gluons, 135, 159

    grand unified theories (GUT), 100, 109, 136, 176

    laws applicable throughout universe, 12, 24, 47, 175

    neutrinos see Neutrinos

    neutrons, 49, 52–6, 134–5

    nuclei, 49–50, 53–5, 55–6, 134

    proton decay, 136

    protons, 24, 30–1, 49–50, 52–6, 134–5

    protons and antiprotons, 94

    quarks and antiquarks, 94, 95, 135

    standard model, 135

    strong (nuclear) interaction, 52–4, 53–4, 58, 134, 135–6, 159

    weak force, 95, 134–5, 159

    see also Atomic structure; Atoms; Superstring theories

Pauli, Wolfgang, 76

Periodic table, 49–50

    effect of different values for ε, 55–7

Perlmutter, Saul, 106

Photons (quanta of radiation)

    density in Universe, 73–4, 89, 96

    gravitational effects, 90

Planck, Max, 157

Planck-Surveyor spacecraft, 120, 141

Planck’s constant, 157

Planetary systems

    detection, 15–16

    formation, 14–15

    search for, 18–19

    unstable among close-packed stars, 128

    unstable if gravity followed inverse-cube law, 150–1

Polkinghorne, John, 166

Principia (Newton), 28

Q (ratio of gravitational binding force to rest-mass energy), 3, 62, 126–9, 169

    critical value, 118–19, 120–1, 127–9, 131

    determinant of ‘ripple’ amplitude, 119–21, 127–8, 141

    effects of deviation from critical value, 128–9

    input to computer models of virtual universes, 121

    measure of gravity weakness in major structures, 196

Quantum ‘foam’, 6, 155, 158, 171

Quantum gravity, 156–9

    in black hole singularities, 158–9

    in early Big Bang, 158

Quantum theory

    Planck length, 157, 158, 159–60

    Planck time, 157, 158

    Planck’s constant, 157

Quasars, 43, 103, 122, 125

Queloz, Didier, 16

Quintessence, 47

Radio transmissions, 23–4

The Realm of the Nebulae (Hubble), 72

Relativity

    built into superstring theory, 161–2

    general theory of, 35–6, 39, 41, 42, 107, 110, 113, 125–6, 161

    see also Einstein, Albert

Sakharov, Andrei, 95, 154

Salam, Abdus, 134–5

Sato, Katsumoto, 138

Second Law of Thermodynamics, 116

SETI Institute, 23

Shelton, Ian, 48

Solar System, evolution of, 14–15, 46, 51–2, 83

Space

    at scale of the Planck length, 159, 160–3

    density of, 108–9

    latent energy of vacuum (λ), 108–10, 140, 167, 169, 169–72

    latent particles, 108, 145

    microstructure of black holes, 109

    monopoles, 143–4

    multidimensional, 150–1, 159–61, 169

    Planck length (ultimate granularity), 12, 44, 157, 159–160

    structure, 144, 175

    three-dimensional, 149

    see also Black holes; Space-time; Superstring theories; Time

Space-time

    curved by presence of mass, 35–6

    new, disjoint, within black holes, 144, 147, 168

    quantum ‘foam’, 6, 155, 158, 171

Speed of light, 35, 36–7, 52, 66, 69

Stanford Linear Accelerator, 135

Starobinski, Alex, 138

Stars

    collisions, 59–60, 112–13

    composition, 47, 50–2

    internal pressures balanced by gravity, 116

    protostars, 14

    superstars, 122, 125–6

    temperature increase with loss of energy, 116

    see also Galaxies; Stellar evolution

Stellar evolution, 125

    age of oldest stars, 66

    Sun, 14–15, 45–9

    supernovae, 38, 47–8, 50, 75

    transmutation from hydrogen to heavier elements, 49–50

Strominger, Andrew, 162

Sun

    evolution through red giant to white dwarf, 46, 80

    fuelled by hydrogen fusion reaction, 45–6, 49–50, 52–4

    rotation round barycentre, 15–16, 83

    self-gravity in equilibrium with hot core, 33, 46

    source of neutrinos, 90

    see also Solar System; Stars; Stellar evolution

Supernovae, 38, 47–8, 50, 75

    Type la, 104

    used as ‘standard candles’ (supernova cosmology project), 104–7

Superstring theories, 3–4, 6, 108, 144, 159–63

    and black holes, 162–3

    multidimensional, 160–1, 169

    quantum mechanics, 163

Taylor, Richard, 135

Telescopes, 17, 119

    Hubble Space Telescope, 68, 70–1

    Keck Telescopes, Hawaii, 71

    Very Large Telescope (VLT), Chile, 71

t’Hooft, Gerard, 134

Time, arrow of, 3, 152–5

    asymmetry between past and future, 152–5

    fourth dimension, 3, 152

    Planck time, 157, 158

Time dilation

    at speeds close to speed of light, 37, 69, 104–5, 152

    near large masses, 38–9, 39, 41, 152

Universe (cosmos)

    atoms as minor constituent, 93–4, 102

    average density of atoms, 73–4, 78, 81–3, 88

    becomes transparent, 74, 119, 122

    block universe, seen from outside time, 153–4

    critical value of Ω, 97–101, 112, 140

    Einstein’s static state concept, 107–9

    evolution from Big Bang, 119–20

    infinite past, 147

    inflationary universe theory, 137–48, 167

    matter-antimatter asymmetry, 94–7, 154

    multiverse concept, 13, 26, 147–8, 166–79

    non-fractal nature, 61–2

    present average temperature, 73

    ratio of heat to matter, 74

    ratio of neutrinos to photons, 89

    ratio of photons to atoms, 73–4

    ratio of photons to protons, 96

    ‘ripples’ in early universe, 118–19, 121, 124, 141–2, 167

    simplicity unlikely, 172

    size of, 10, 12–13, 146–7

    steady-state theory, 75–6

    through a zoom lens, 5–7

    uniformity of large scale structures, 61–3, 64, 118–19, 155

    see also Big Bang; Dark matter; Q; Universe, expanding; Virtual universes

Universe, expanding, 63–6, 69–70, 74–6, 107–8, 132

    arrow of time, 153–5

    balance between expansion energy and gravity (Ω), 81–2, 144–5

    critical density to reverse expansion, 81–3

    force of cosmic repulsion (λ), 84, 107, 112, 113–14, 127

    increasing rate of, 102–3, 106–14

    rate (Hubble constant) uniform in all directions, 100

    ratio of actual to critical density (Ω), 82, 137

    recession speed not constant, 70

    recession speed proportional to redshift, 63–6

    results of indefinite continuation, 112–14

    zero net energy, 144–5

    see also Galaxies; Inflationary universe theory

Uranus, planetary collision, 18

Virtual universes (computer simulations), 121–3

    atoms, 122

    black holes and quasars, 125–7

    dark matter dominant, 123

    gravitational aggregation, 121–3

    multiverses, 168

    non-uniform density distributions, 122–3, 124, 126

    primordial condensations, 121–2

    superstars, 122, 125–6

Weinberg, Steven, 134–5

Wheeler, John Archibald, 41

Witten, Edward, 161

Zweig, George, 135