[1]. Park M. IEEE 802.11ah: sub-1-GHz license-exempt operation for the internet of things.
Comput. Commun.,
. March 2015;Vol. 58:53–69.
[2]. Federal Communications Commission, . Title 47 of the Code of federal regulations, Part 15 on radio frequency devices. 2017 Available from:. https://www.fcc.gov/general/rules-regulations-title-47.
[3].
European Conference of Postal and Telecommunications Administrations (CEPT). Available from: http://www.cept.org/cept/.
[4]. CEPT Electronic Communications Committee (ECC).
ERC recommendation 70-03, relating to the use of short-range devices (SRD)
. 2016 Edition of October 2016.
[5]. European Telecom Standards Institute, .
EN 300 220-1 V3.1.1, short range devices (SRD) operating in the frequency range 25 MHz to 1 000 MHz; Part 1: technical characteristics and methods of measurement
. February 2017.
[6]. European Telecom Standards Institute, .
EN 300 220-2 V2.4.1 electromagnetic compatibility and radio spectrum matters (ERM); short range devices (SRD); radio equipment to Be used in the 25 MHz to 1 000 MHz frequency range with power levels ranging up to 500 mW; Part 2: harmonized EN covering essential requirements under article 3.2 of the R&TTE directive
. May 2012.
[7]. European Telecom Standards Institute, .
EN 300 440-1 V1.6.1, electromagnetic compatibility and radio spectrum matters (ERM); short range devices; radio equipment to Be used in the 1 GHz to 40 GHz frequency range; Part 1: technical characteristics and test methods
. August 2010.
[8]. European Telecom Standards Institute, .
EN 300 440 V2.1.1, short range devices (SRD); radio equipment to Be used in the 1 GHz to 40 GHz frequency range; harmonised standard covering the essential requirements of article 3.2 of directive 2014/53/EU
. January 2017.
[9]. European Telecom Standards Institute.
EN 300 328 V2.1.1, wideband transmission systems; data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; harmonised standard covering the essential requirements of article 3.2 of directive 2014/53/EU
. November 2011.
[10]. Gutierrez J.A, Naeve M, Callaway E, Bourgeois M, Milter V, Heile B. IEEE 802.15.4: a developing standard for low-power low-cost wireless personal area networks.
IEEE Network.,
. September/October 2001;Vol. 15(5):12–19.
[11]. Callaway E, Gorday P, Hester L, Gutierrez J.A, Naeve M, Heile B, Bahl V. Home networking with IEEE 802.15.4: a developing standard for low-rate wireless personal area networks.
IEEE Commun. Mag.,
. August 2002;Vol. 40(8):70–77.
[12]. Zheng J, Lee M.J. Will IEEE 802.15.4 make ubiquitous networking a reality? a discussion on a potential low power, low bit rate standard.
IEEE Commun. Mag.,
. June 2004;Vol. 42(6):140–146.
[13]. Akyildiz I.F, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks: a survey.
Comput. Netw.,
. 2002;Vol. 38:393–422.
[14]. Akyildiz I.F, Su W, Sankarasubramaniam Y, Cayirci E. A survey on sensor networks.
IEEE Commun. Mag.,
. August 2002;Vol. 40(8):102–114.
[15]. Willig A. Recent and emerging topics in wireless industrial communications: a selection.
IEEE Transactions on Industrial Informatics,
. May 2008;Vol. 4(2):102–124.
[16]. Langhammer N, Kays R. Performance evaluation of wireless home automation networks in indoor scenarios.
IEEE Transactions on Smart Grid,
. December 2012;Vol. 3(4).
[17]. Palattella M.R, Accettura N, Vilajosana X, Watteyne T, Grieco L.A, Boggia G, Dohler M. Standardized protocol stack for the internet of (important) things.
IEEE Communications Surveys and Tutorials,
. 2013;Vol. 15(3).
[18]. Lee J.-S. Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks.
IEEE Trans. Consum. Electron.,
. August 2006;Vol. 52(3).
[19]. Internet Engineering Task Force (IETF), .
Request for comments 4944, transmission of IPv6 packets over IEEE 802.15.4 networks
. September 2007.
[20]. Hui J.W, Culler D.E. IPv6 in low-power wireless networks.
Proc. IEEE,
. November 2010;Vol. 98(11).
[21]. Hui J.W, Culler D.E.
Extending IP to low-power, wireless personal area networks
. IEEE Internet Computing; July/August 2008. .
[22]. Ishaq I, Carels D, Teklemariam G.K, Hoebeke J, Van den Abeele F, De Poorter E, Moerman I, Demeester P. IETF standardization in the field of the internet of things (IoT): a survey.
J. Sens. Actuator Netw.,
. April 2013;Vol. 2(2):235–287.
[23]. Internet Engineering Task Force (IETF), .
Request for comments 6550, RPL: IPv6 routing protocol for low-power and lossy networks
. March 2012.
[24]. Chang K.-H, Mason B. The IEEE 802.15.4g standard for smart metering utility networks. In:
Proceedings IEEE international conference on smart grid communications, Tainan city, Taiwan,
. 5–8 November 2012.
[25]. Sum C.-S, Kojima F, Harada H. Coexistence of homogeneous and heterogeneous systems for IEEE 802.15.4g smart utility networks. In:
Proc. IEEE international symposium on dynamic spectrum access networks (DySPAN), Aachen, Germany, 3–6 May
. 2011.
[26]. Sum C.-S, Harada H, Kojima F, Lu L. An interference management protocol for multiple physical layers in IEEE 802.15.4g smart utility networks.
IEEE Commun. Mag.,
. April 2013;Vol. 51(4):84–91.
[27]. Haartsen J. Bluetooth—the universal radio interface for ad hoc, wireless connectivity.
Ericsson Rev. Engl. Ed.,
. 1998;Vol. 75(3):110–117 Available from:. http://ericssonhistory.com/Global/Ericsson%20review/Ericsson%20Review.%201998.%20V.75/Ericsson_Review_Vol_75_1998_3.pdf.
[28]. Haartsen J.C. The bluetooth radio system.
IEEE Personal Communications,
. August 2002;Vol. 7(1):28–36.
[29]. Bluetooth Special Interest Group, .
Bluetooth core specification v4.0
. June 2010.
[30]. Del Carpio L.F, Di Marco P, Skillermark P, Chirikov R, Lagergren K, Amin P. Comparison of 802.11ah and BLE for a home automation use case. In:
Proc. IEEE 27th Annual international symposium on personal, indoor, and mobile radio communications (PIMRC),
. 4–8 September 2016.
[31].
L. F. Del Carpio, P. Di Marco, P. Skillermark, R. Chirikov, K. Lagergren. Comparison of 802.11ah and BLE in a home automation use case, to appear in springer international journal of wireless information networks.
[32]. Di Marco P, Chirikov R, Amin P, Militano F. Coverage analysis of bluetooth low energy and IEEE 802.11ah for office scenario. In:
Proc. IEEE int. Symposium on personal, indoor and mobile radio communications
. Workshop M2M Communication; August 2015.
[33]. Bluetooth Special Interest Group, .
Internet protocol support profile (IPSP)
. December 2014.
[34]. Internet Engineering Task Force (IETF), .
Request for comments 7668
. IPv6 over BLUETOOTH Low Energy; October 2015.
[35]. Bluetooth Special Interest Group, .
Internet gateways, Bluetooth white paper
. February 2016.
[36]. Bluetooth Special Interest Group, .
Bluetooth core specification v5.0
. December 2016.
[37]. Di Marco P, Skillermark P, Larmo A, Arvidson P, Chirikov R. Performance evaluation of the data transfer modes in Bluetooth 5.
IEEE Communications Standards Magazine,
. July 2017;Vol. 1(2):92–97.
[38]. Bluetooth Special Interest Group.
Bluetooth specification mesh profile, v1.0.1
. January 2019.
[39]. Sun W, Lee O, Shin Y, Kim S, Yang C, Kim H, Choi S.
Wi-fi could Be much more
. IEEE Communications Magazine; November 2014.
[40]. Sun W, Choi M, Choi S. IEEE 802.11ah: a long range 802.11 WLAN at sub 1 GHz.
Journal of ICT Standardization,
. July 2013;Vol. 1(1):83–108.
[41]. Adame T, Bel A, Bellalta B, Barcelo J, Oliver M. IEEE 802.11ah: the WiFi approach for M2M communications.
IEEE Wireless Communications,
. December 2014;Vol. 21(6):144–152.
[42]. Khorov E, Lyakhov A, Krotov A, Guschin A. A survey on IEEE 802.11ah: an enabling networking technology for smart cities.
Comput. Commun.,
. March 1, 2015;Vol. 58:53–69.
[43]. Badihi B, Del Carpio L.F, Amin P, Larmo A, Lopez M, Denteneer D. Performance evaluation of IEEE 802.11ah actuators. In:
Proceedings 83rd IEEE vehicular technology conference, Nanjing, China
. May 2016:15–18.
[44]. Sachs J, Beijar N, Elmdahl P, Melen J, Militano F, Salmela P.
Capillary networks – a smart way to get things connected
. Ericsson Review; September 2014.
[45]. LoRA Alliance Technical Marketing Workgroup 1.0.
White paper, LoRaWAN, what is it?
A Technical Overview of LoRa® and LoRaWAN; November 2015.
[46]. LoRa Alliance.
LoRaWAN™ specification, V1.0
. January 2015.
[47]. Sigfox Wireless. GPC150052, coperative ultra narrow band technology for cellular IoT, 3GPP TSG GERAN1-GERAN2 ad'hoc meeting, sophia antipolis, France, 2–5; February 2015. .
[48]. ETSI Industry Specification Group on Low Throughput Networks.
(ISG LTN), GS LTN 002 V1.1.1, low throughput networks (LTN); functional architecture
. September 2014.
[49]. ETSI Industry Specification Group on Low Throughput Networks.
(ISG LTN), GS LTN 003 V1.1.1, low throughput networks (LTN); protocols and interfaces
. September 2014.
[50].
European Comission, Comission Decision of 9 November 2006 on harmonisation of the radio spectrum for use by short-range device (2006/771/EC), Edition of 18.8.2017.
[51]. S. Andreev, O. Galinina, A. Pyattaev, Gerasimenko, T. Tirronen M, J. Torsner, J. Sachs, M. Dohler, Koucheryavy Y. Understanding the IoT connectivity landscape: a contemporary M2M radio technology roadmap.
IEEE Commun. Mag.,
. September 2015;Vol. 53(9):32–40.
[52].
IEEE 802.11ah-2016 - IEEE standard for information technology--telecommunications and information exchange between systems - local and metropolitan area networks--specific requirements - Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 2: sub 1 GHz license exempt operation
. May 2017.