Image 5 Image

OILS AND FATS

The uses and properties of oils and fats are familiar to everyone who eats. But what gives them those properties is not so commonly known. You know that oil and water do not mix, but what other properties of oils and fats can you list, to better understand why they behave the way they do?

A water molecule is polar, with one side positively charged and the other side negatively charged, and tends to link up with other water molecules. The positive end is attracted to the negative end of another molecule, and they draw close together due to the attraction. This makes water dense.

Oils and fats are not polar. They don’t have positive and negative parts that attract one another. Instead, they are attracted by much weaker but similar forces that arise because the electrons in the molecules are always moving. When electrons move to one side of a molecule, a temporary state exists where one side is more negative than the other. Electrons in a nearby molecule are attracted to the more positive side, and for a very short time the two molecules are synchronized, with their electrons on the same side, so they behave as if they were polar. But this attraction is very weak; small amounts of heat energy break these links, and they form and break continuously.

Oils and fat molecules are only weakly attracted to one another and do not pack together as tightly as water molecules do. So oil is less dense than water and floats.

You get energy from food by “burning” it—combining it with oxygen. If you look at a sugar molecule, you see that it already contains oxygen. In other words, it is already partially burned:

Image

In a sucrose molecule (table sugar) there are 11 oxygen atoms, 22 hydrogen atoms, and 12 carbon atoms. Because there are twice as many hydrogen atoms as oxygen atoms, and H2O is water, these molecules (sugars, starches, pectins, etc.) are called carbohydrates—carbon plus water.

Image Chemistry Lesson

Different Ways to Look at Molecules

In this book I have chosen to show molecules using the most common shorthand form. But there are other ways chemists use to show the structure of a molecule.

The following illustrations are different ways of showing what oleic acid looks like. Oleic acid is one of the fatty acids in olive oil.

Image

Here you can see the carbons, hydrogens, and oxygens labeled. All of the labels make the picture very busy.

When a molecule contains only a few different types of atoms, we can simply use color or shading to identify them.

Image

The space-filling form above is less cluttered, but some atoms are almost hidden. The following form shows them more clearly.

Image

Here you can see where the double bond is, and that there is only a single hydrogen attached to each double-bonded carbon.

Fat molecules are mostly just carbon and hydrogen. A typical triglyceride (fat) only has 6 oxygen atoms and might have over 50 carbons and over 100 hydrogens. Because less of the molecule is already burned, fats contain more fuel than carbohydrates.

A typical triglyceride found in fats is tristearin, found in beef fat:

Image

It has a glycerin molecule

Image

at its center, and instead of the three hydrogens attached to the oxygens, it has three stearic acid molecules attached:

Image

Three long chains of carbon and hydrogen are attached to the central glycerin molecule. These long chains rub against and tangle with other long chains on nearby tristearin molecules, which makes it more difficult for the molecules to move about than is the case for water molecules. The result is a thicker liquid, with a higher melting point than water. In fact, tristearin is a solid at room temperature, melting at 161°F (72°C). But it is still less dense than water, and it floats.

If you had a pile of branches from a tree, the branches would not pack flat, whereas in a pile of lumber all the boards will line up and pack flat, with each board touching the next all along its length. The long chains in fats like tristearin can line up together, like lumber, so the attractions between the molecules are stronger than if they only touched at one or two points, like branches. This attraction raises the melting point. There are triglyceride molecules where the long chains have kinks in them, like the branches, so they don’t line up easily. (See the kink at the double bond in the oleic acid molecule on the bottom of page 83.) These have lower melting points.

Oils have more of these kinked molecules than fats do, so they are liquid at room temperature. The kink forms at the double bond, because the lone hydrogens attached there are on the same side, have a slight positive charge, and repel one another. The slight positive charge is because the electron is attracted to the carbon more than the hydrogen and therefore spends more time near the carbon than the hydrogen.

Because the molecules are so big, it takes more energy to get them to leave the liquid state and become a gas. Oils and fats do not evaporate as easily as small molecules like water.

Most fats are a mixture of many different types of triglyceride molecules. In pure form, each molecule would make a liquid that has a distinct sharp melting point. But when many different types are all mixed together, the substance softens slowly over a range of temperatures instead of melting at one temperature. When a substance such as ice (which has only one type of molecule: water) melts, it does not soften slowly. Instead, it has two distinct phases. The solid ice is coated with liquid water, and the two are at different temperatures. But fats (because they are composed of many molecules with different melting points) slowly become soft and can be spread or mixed with other ingredients before they are completely melted.

Saturated Fats

Carbon atoms can bond to four other atoms. In the long chains in the triglyceride molecules, each carbon is attached to the next carbon atom by either a single bond or a double bond. A double bond uses up two of the four available bonds, so each double-bonded carbon can only hold onto one hydrogen instead of two. If the carbons are attached with only a single bond, each carbon has room to hold onto two hydrogen atoms. Fats that have as much hydrogen as possible are said to be saturated with hydrogen; they are saturated fats.

The tristearin in beef fat is an example of a saturated fat. Saturated fats have chains that are not kinked. They can lie together closely like a stack of lumber.

Monounsaturated Fats

A double bond in a chain of carbons introduces a kink in the molecule. Because there are two bonds, the molecule is constrained in its motion, like a door with two hinges. The kink makes it harder for the molecules to line up together, so the attractive forces are less. Where a saturated fat has chains that are flexible, like a necklace chain, a chain made of all double bonds would be like a bicycle chain, only able to bend in one plane.

When there is only one double bond in the long chain, the fat is said to be monounsaturated. A typical monounsaturated fat is triolein (found in olive oil and macadamia nuts). It stays liquid at temperatures below freezing (22°F, -5°C). The oil in macadamia nuts is almost 80 percent monounsaturated, and olive oil is 75 percent monounsaturated.

Image

Triolein

Polyunsaturated Fats

When more than one bond in the chain is double, it’s a polyunsaturated fat. As the number of double bonds increases, the melting point of the fat begins to go up again. But unlike saturated fats, where the high melting point is caused by the straight chains stacking up next to one another, the double bonds of polyunsaturated fats get tangled together, which also raises the melting point.

Image Chemistry Lesson

Kinky Molecules

Sometimes a concept is easier to understand if you can feel it in your hands. To get a better sense of how a kink forms at a double bond, look at the photo below. It shows eight cubic magnets and nine steel balls. The magnets represent carbon atoms, and the steel balls represent the clouds of electric force where the electrons are.

Image

The two steel balls side by side on the left represent a double bond. It is easy to bend the molecule at this point, but only along a single plane, like a door on a hinge. The rest of the chain stays somewhat straight, since the negative charges (steel balls) repel one another and try to stay as far apart as possible. But they can still rotate.

An example of a polyunsaturated fat has the conveniently memorable name of trieicosapentaenoin (triEPA for short). In triEPA, each of the three chains has five double bonds. The name comes from the fact that there are 20 carbons in the chain (the Greek word for 20 is eicosa), and five double bonds (the Greek word for 5 is penta).

Trieicosapentaenoin is found in fish oils. The fish don’t make it; they get it from the algae they eat. The three chains are made up of eicosapentaenoic acid (EPA for short), which the human body converts into many essential substances called eicosanoids.

EPA is also converted into docosahexanoic acid (DHA for short), the major fatty acid in sperm and the precursor molecule to many important hormones.

Image

Trieicosapentaenoin

Omega-3 and Omega-6 Fats

If you look at the ends of the three chains in triEPA, you see that the last carbon in the last double bond is attached to a very short (two-carbon) chain at the end. The tail of the chain is called the omega end, named for the last letter in the Greek alphabet. The third carbon from the end is the one with the double bond.

Such a fat is called an omega-3 fat. More commonly, each of the three chains is said to consist of an omega-3 fatty acid.

In humans, omega-3 and omega-6 fatty acids are used to create many hormones that control the immune system and other functions. The enzymes that perform the conversions are the same for both types of fatty acids. But the omega-6 fatty acids can hog these enzymes, so that more omega-6 hormones are produced than omega-3 hormones. This can cause inflammation, arthritis, heart attacks, strokes, and depression. The typical Western diet contains 10 times as much omega-6 fat as omega-3 fat, resulting in hormonal imbalances that contribute to all of those diseases.

An example of an omega-6 fat is triarachidonin:

Image

The drugs called COX-1 and COX-2 inhibitors used to treat pain and inflammation (aspirin, ibuprofen, naproxen) work by preventing arachidonic acid from being converted into inflammatory compounds.

Trans Fats

The fats discussed so far have both hydrogens at each double bond on the same side of the chain. The hydrogens are said to be in the cis position, from the Greek word for “on the same side.” When the hydrogens are both on the same side, the chain kinks.

But there is another position they can be in, in which one hydrogen is on one side and the other is on the opposite side. This is called the trans position.

The chains in trans fats are straight, like those of saturated fats. Trans fats have high melting points and act a lot like saturated fats.

Trans fats form when unsaturated fats are heated. As the heat makes the molecules shake and vibrate, some of the bonds get changed from the cis to the trans position. As the fat continues to cook, the bonds may change back and forth many times, resulting in a fat that has about half of the bonds in the cis and half in the trans positions.

Image

Trans trilinolenin

In the making of vegetable shortening, vegetable oils containing unsaturated fats are heated with a catalyst and some hydrogen, so that some of the double bonds gain a hydrogen and convert to saturated single bonds. But the process requires heat, and the heating produces undesirable trans bonds.

Trans fats have been shown to increase the risk of coronary heart disease by raising the levels of bad LDL cholesterol and lowering the levels of good HDL cholesterol.

Shortening was invented as a way to make solid fat from cheap vegetable oils, which could be substituted for the more expensive lard in cooking. It was only recently that the health problems associated with trans fats were discovered. Originally, vegetable shortening and margarine were sold as healthier alternatives to lard and butter.

These days, shortening is made by continuing to saturate the oils, so that there are almost no double bonds left, and then mixing the product with unsaturated oils until there is less than a gram of trans fat in a tablespoon of shortening. This allows the manufacturer to claim that there are zero grams of trans fat in the shortening.

Since there are 12.8 grams in a tablespoon of shortening, there can be 6 percent trans fat left in the shortening to still qualify for the label “zero grams” of trans fat. In other words, there can be 16 grams of trans fat in a cup of shortening that claims to have zero grams.

Compare the structure of triolein shown earlier with its trans version shown on the next page:

Image

Here the chains are not kinked. They are shown as being straight, but actually the long chains can bend like spaghetti, except where there are double bonds. There, the movement is constrained to a hingelike motion, due to the carbons being linked in two places instead of just one.

Saturated fats have the most flexible chains, since all the bonds are single bonds. They can pack together tightly in many configurations, and so they have the highest melting points. Trans fats are almost as good at packing, and have melting points in between that of similar saturated and cis-unsaturated fats. In the kinked cis-unsaturated fats like triolein, the kinks get in the way of packing, and the melting point is considerably lower.