4 Cracking the Enigma
In the years that followed the First World War, the British cryptanalysts in Room 40 continued to monitor German communications. In 1926 they began to intercept messages which baffled them completely. Enigma had arrived, and as the number of Enigma machines increased, Room 40’s ability to gather intelligence diminished rapidly. The Americans and the French also tried to tackle the Enigma cipher, but their attempts were equally dismal, and they soon gave up hope of breaking it. Germany now had the most secure communications in the world.
The speed with which the Allied cryptanalysts abandoned hope of breaking Enigma was in sharp contrast to their perseverance just a decade earlier in the First World War. Confronted with the prospect of defeat, the Allied cryptanalysts had worked night and day to penetrate German ciphers. It would appear that fear was the main driving force, and that adversity is one of the foundations of successful codebreaking. Similarly, it was fear and adversity that galvanized French cryptanalysis at the end of the nineteenth century, faced with the increasing might of Germany. However, in the wake of the First World War the Allies no longer feared anybody. Germany had been crippled by defeat, the Allies were in a dominant position, and as a result they seemed to lose their cryptanalytic zeal. Allied cryptanalysts dwindled in number and deteriorated in quality.
One nation, however, could not afford to relax. After the First World War, Poland reestablished itself as an independent state, but it was concerned about threats to its newfound sovereignty. To the east lay Russia, a nation ambitious to spread its communism, and to the west lay Germany, desperate to regain territory ceded to Poland after the war. Sandwiched between these two enemies, the Poles were desperate for intelligence information, and they formed a new cipher bureau, the Biuro Szyfrów. If necessity is the mother of invention, then perhaps adversity is the mother of cryptanalysis. The success of the Biuro Szyfrów is exemplified by their success during the Russo-Polish War of 1919–20. In August 1920 alone, when the Soviet armies were at the gates of Warsaw, the Biuro deciphered 400 enemy messages. Their monitoring of German communications had been equally effective, until 1926, when they too encountered the Enigma messages.
In charge of deciphering German messages was Captain Maksymilian Ciezki, a committed patriot who had grown up in the town of Szamotuty, a center of Polish nationalism. Ciezki had access to a commercial version of the Enigma machine, which revealed all the principles of Scherbius’s invention. Unfortunately, the commercial version was distinctly different from the military one in terms of the wirings inside each scrambler. Without knowing the wirings of the military machine, Ciezki had no chance of deciphering messages being sent by the German army. He became so despondent that at one point he even employed a clairvoyant in a frantic attempt to conjure some sense from the enciphered intercepts. Not surprisingly, the clairvoyant failed to make the breakthrough the Biuro Szyfrów needed. Instead, it was left to a disaffected German, Hans-Thilo Schmidt, to make the first step toward breaking the Enigma cipher.
Hans-Thilo Schmidt was born in 1888 in Berlin, the second son of a distinguished professor and his aristocratic wife. Schmidt embarked on a career in the German Army and fought in the First World War, but he was not considered worthy enough to remain in the army after the drastic cuts implemented as part of the Treaty of Versailles. He then tried to make his name as a businessman, but his soap factory was forced to close because of the postwar depression and hyperinflation, leaving him and his family destitute.
The humiliation of Schmidt’s failures was compounded by the success of his elder brother, Rudolph, who had also fought in the war, and who was retained in the army afterward. During the 1920s Rudolph rose through the ranks and was eventually promoted to chief of staff of the Signal Corps. He was responsible for ensuring secure communications, and in fact it was Rudolph who officially sanctioned the army’s use of the Enigma cipher.
After his business collapsed, Hans-Thilo was forced to ask his brother for help, and Rudolph arranged a job for him in Berlin at the Chiffrierstelle, the office responsible for administrating Germany’s encrypted communications. This was Enigma’s command center, a top-secret establishment dealing with highly sensitive information. When Hans-Thilo moved to his new job, he left his family behind in Bavaria, where the cost of living was affordable. He was living alone in expensive Berlin, impoverished and isolated, envious of his perfect brother and resentful toward a nation which had rejected him. The result was inevitable. By selling secret Enigma information to foreign powers, Hans-Thilo Schmidt could earn money and gain revenge, damaging his country’s security and undermining his brother’s organization.
On November 8, 1931, Schmidt arrived at the Grand Hotel in Verviers, Belgium, for a liaison with a French secret agent codenamed Rex. In exchange for 10,000 marks (equivalent to $30,000 in today’s money), Schmidt allowed Rex to photograph two documents: “Gebrauchsanweisung für die Chiffriermaschine Enigma” and “Schlüsselanleitung für die Chiffriermaschine Enigma.” These documents were essentially instructions for using the Enigma machine, and although there was no explicit description of the wirings inside each scrambler, they contained the information needed to deduce those wirings.
Figure 41 Hans-Thilo Schmidt. (photo credit 4.1)
Thanks to Schmidt’s treachery, it was now possible for the Allies to create an accurate replica of the German military Enigma machine. However, this was not enough to enable them to decipher messages encrypted by Enigma. The strength of the cipher depends not on keeping the machine secret, but on keeping the initial setting of the machine (the key) secret. If a cryptanalyst wants to decipher an intercepted message, then, in addition to having a replica of the Enigma machine, he still has to find which of the millions of billions of possible keys was used to encipher it. A German memorandum put it thus: “It is assumed in judging the security of the cryptosystem that the enemy has at his disposition the machine.”
The French Secret Service was clearly up to scratch, having found an informant in Schmidt, and having obtained the documents that suggested the wirings of the military Enigma machine. In comparison, French cryptanalysts were inadequate, and seemed unwilling and unable to exploit this newly acquired information. In the wake of the First World War they suffered from overconfidence and lack of motivation. The Bureau du Chiffre did not even bother trying to build a replica of the military Enigma machine, because they were convinced that achieving the next stage, finding the key required to decipher a particular Enigma message, was impossible.
As it happened, ten years earlier the French had signed an agreement of military cooperation with the Poles. The Poles had expressed an interest in anything connected with Enigma, so in accordance with their decade-old agreement the French simply handed the photographs of Schmidt’s documents to their allies, and left the hopeless task of cracking Enigma to the Biuro Szyfrów. The Biuro realized that the documents were only a starting point, but unlike the French they had the fear of invasion to spur them on. The Poles convinced themselves that there must be a shortcut to finding the key to an Enigma-encrypted message, and that if they applied sufficient effort, ingenuity and wit, they could find that shortcut.
As well as revealing the internal wirings of the scramblers, Schmidt’s documents also explained in detail the layout of the codebooks used by the Germans. Each month, Enigma operators received a new codebook which specified which key should be used for each day. For example, on the first day of the month, the codebook might specify the following day key:
(1) Plugboard settings: | A/L-P/R-T/D-B/W-K/F-O/Y. |
(2) Scrambler: arrangement: | 2-3-1. |
(3)Scrambler orientations: | Q-C-W. |
Together, the scrambler arrangement and orientations are known as the scrambler settings. To implement this particular day key, the Enigma operator would set up his Enigma machine as follows:
(1) Plugboard settings: Swap the letters A and L by connecting them via a lead on the plugboard, and similarly swap P and R, then T and D, then B and W, then K and F, and then O and Y.
(2) Scrambler arrangement: Place the 2nd scrambler in the 1st slot of the machine, the 3rd scrambler in the 2nd slot, and the 1st scrambler in the 3rd slot.
(3) Scrambler orientations: Each scrambler has an alphabet engraved on its outer rim, which allows the operator to set it in a particular orientation. In this case, the operator would rotate the scrambler in slot 1 so that Q is facing upward, rotate the scrambler in slot 2 so that C is facing upward, and rotate the scrambler in slot 3 so that W is facing upward.
One way of encrypting messages would be for the sender to encrypt all the day’s traffic according to the day key. This would mean that for a whole day at the start of each message all Enigma operators would set their machines according to the same day key. Then, each time a message needed to be sent, it would be first typed into the machine; the enciphered output would then be recorded, and handed to the radio operator for transmission. At the other end, the receiving radio operator would record the incoming message, hand it to the Enigma operator, who would type it into his machine, which would already be set to the same day key. The output would be the original message.
This process is reasonably secure, but it is weakened by the repeated use of a single day key to encrypt the hundreds of messages that might be sent each day. In general, it is true to say that if a single key is used to encipher an enormous quantity of material, then it is easier for a cryptanalyst to deduce it. A large amount of identically encrypted material provides a cryptanalyst with a correspondingly larger chance of identifying the key. For example, harking back to simpler ciphers, it is much easier to break a monoalphabetic cipher with frequency analysis if there are several pages of encrypted material, as opposed to just a couple of sentences.
As an extra precaution, the Germans therefore took the clever step of using the day key settings to transmit a new message key for each message. The message keys would have the same plugboard settings and scrambler arrangement as the day key, but different scrambler orientations. Because the new scrambler orientation would not be in the codebook, the sender had to transmit it securely to the receiver according to the following process. First, the sender sets his machine according to the agreed day key, which includes a scrambler orientation, say QCW. Next, he randomly picks a new scrambler orientation for the message key, say PGH. He then enciphers PGH according to the day key. The message key is typed into the Enigma twice, just to provide a double-check for the receiver. For example, the sender might encipher the message key PGHPGH as KIVBJE. Note that the two PGH’s are enciphered differently (the first as KIV, the second as BJE) because the Enigma scramblers are rotating after each letter, and changing the overall mode of encryption. The sender then changes his machine to the PGH setting and encrypts the main message according to this message key. At the receiver’s end, the machine is initially set according to the day key, QCW. The first six letters of the incoming message, KIVBJE, are typed in and reveal PGHPGH. The receiver then knows to reset his scramblers to PGH, the message key, and can then decipher the main body of the message.
This is equivalent to the sender and receiver agreeing on a main cipher key. Then, instead of using this single main cipher key to encrypt every message, they use it merely to encrypt a new cipher key for each message, and then encrypt the actual message according to the new cipher key. Had the Germans not employed message keys, then everything—perhaps thousands of messages containing millions of letters—would have been sent using the same day key. However, if the day key is only used to transmit the message keys, then it encrypts only a limited amount of text. If there are 1,000 message keys sent in a day, then the day key encrypts only 6,000 letters. And because each message key is picked at random and is used to encipher only one message, then it encrypts a limited amount of text, perhaps just a few hundred characters.
At first sight the system seemed to be impregnable, but the Polish cryptanalysts were undaunted. They were prepared to explore every avenue in order to find a weakness in the Enigma machine and its use of day and message keys. Foremost in the battle against Enigma was a new breed of cryptanalyst. For centuries, it had been assumed that the best cryptanalysts were experts in the structure of language, but the arrival of Enigma prompted the Poles to alter their recruiting policy. Enigma was a mechanical cipher, and the Biuro Szyfrów reasoned that a more scientific mind might stand a better chance of breaking it. The Biuro organized a course on cryptography and invited twenty mathematicians, each of them sworn to an oath of secrecy. The mathematicians were all from the university at Poznán. Although not the most respected academic institution in Poland, it had the advantage of being located in the west of the country, in territory that had been part of Germany until 1918. These mathematicians were therefore fluent in German.
Three of the twenty demonstrated an aptitude for solving ciphers, and were recruited into the Biuro. The most gifted of them was Marian Rejewski, a timid, spectacled twenty-three-year-old who had previously studied statistics in order to pursue a career in insurance. Although a competent student at the university, it was within the Biuro Szyfrów that he was to find his true calling. He served his apprenticeship by breaking a series of traditional ciphers before moving on to the more forbidding challenge of Enigma. Working entirely alone, he concentrated all of his energies on the intricacies of Scherbius’s machine. As a mathematician, he would try to analyze every aspect of the machine’s operation, probing the effect of the scramblers and the plugboard cablings. However, as with all mathematics, his work required inspiration as well as logic. As another wartime mathematical cryptanalyst put it, the creative codebreaker must “perforce commune daily with dark spirits to accomplish his feats of mental ju-jitsu.”
Rejewski’s strategy for attacking Enigma focused on the fact that repetition is the enemy of security: repetition leads to patterns, and cryptanalysts thrive on patterns. The most obvious repetition in the Enigma encryption was the message key, which was enciphered twice at the beginning of every message. If the operator chose the message key ULJ, then he would encrypt it twice so that ULJULJ might be enciphered as PEFNWZ, which he would then send at the start before the actual message. The Germans had demanded this repetition in order to avoid mistakes caused by radio interference or operator error. But they did not foresee that this would jeopardize the security of the machine.
Each day, Rejewski would find himself with a new batch of intercepted messages. They all began with the six letters of the repeated three-letter message key, all encrypted according to the same agreed day key. For example, he might receive four messages that began with the following encrypted message keys:
In each case, the 1st and 4th letters are encryptions of the same letter, namely the first letter of the message key. Also, the 2nd and 5th letters are encryptions of the same letter, namely the second letter of the message key, and the 3rd and 6th letters are encryptions of the same letter, namely the third letter of the message key. For example, in the first message L and R are encryptions of the same letter, the first letter of the message key. The reason why this same letter is encrypted differently, first as L and then as R, is that between the two encryptions the first Enigma scrambler has moved on three steps, changing the overall mode of scrambling.
The fact that L and R are encryptions of the same letter allowed Rejewski to deduce some slight constraint on the initial setup of the machine. The initial scrambler setting, which is unknown, encrypted the first letter of the day key, which is also unknown, into L, and then another scrambler setting, three steps on from the initial setting, which is still unknown, encrypted the same letter of the day key, which is also still unknown, into R.
This constraint might seem vague, as it is full of unknowns, but at least it demonstrates that the letters L and R are intimately related by the initial setting of the Enigma machine, the day key. As each new message is intercepted, it is possible to identify other relationships between the 1st and 4th letters of the repeated message key. All these relationships are reflections of the initial setting of the Enigma machine. For example, the second message above tells us that M and X are related, the third tells us that J and M are related, and the fourth that D and P are related. Rejewski began to summarize these relationships by tabulating them. For the four messages we have so far, the table would reflect the relationships between (L, R), (M, X), (J, M) and (D, P):
If Rejewski had access to enough messages in a single day, then he would be able to complete the alphabet of relationships. The following table shows such a completed set of relationships:
Figure 42 Marian Rejewski.
Rejewski had no idea of the day key, and he had no idea which message keys were being chosen, but he did know that they resulted in this table of relationships. Had the day key been different, then the table of relationships would have been completely different. The next question was whether there existed any way of determining the day key by looking at the table of relationships. Rejewski began to look for patterns within the table, structures that might indicate the day key. Eventually, he began to study one particular type of pattern, which featured chains of letters. For example, in the table, A on the top row is linked to F on the bottom row, so next he would look up F on the top row. It turns out that F is linked to W, and so he would look up W on the top row. And it turns out that W is linked to A, which is where we started. The chain has been completed.
With the remaining letters in the alphabet, Rejewski would generate more chains. He listed all the chains, and noted the number of links in each one:
So far, we have only considered the links between the 1st and 4th letters of the six-letter repeated key. In fact, Rejewski would repeat this whole exercise for the relationships between the 2nd and 5th letters, and the 3rd and 6th letters, identifying the chains in each case and the number of links in each chain.
Rejewski noticed that the chains changed each day. Sometimes there were lots of short chains, sometimes just a few long chains. And, of course, the letters within the chains changed. The characteristics of the chains were clearly a result of the day key setting-a complex consequence of the plugboard settings, the scrambler arrangement and the scrambler orientations. However, there remained the question of how Rejewski could determine the day key from these chains. Which of 10,000,000,000,000,000 possible day keys was related to a particular pattern of chains? The number of possibilities was simply too great.
It was at this point that Rejewski had a profound insight. Although the plugboard and scrambler settings both affect the details of the chains, their contributions can to some extent be disentangled. In particular, there is one aspect of the chains which is wholly dependent on the scrambler settings, and which has nothing to do with the plugboard settings: the numbers of links in the chains is purely a consequence of the scrambler settings. For instance, let us take the example above and pretend that the day key required the letters S and G to be swapped as part of the plugboard settings. If we change this element of the day key, by removing the cable that swaps S and G, and use it to swap, say, T and K instead, then the chains would change to the following:
Some of the letters in the chains have changed, but, crucially, the number of links in each chain remains constant. Rejewski had identified a facet of the chains that was solely a reflection of the scrambler settings.
The total number of scrambler settings is the number of scrambler arrangements (6) multiplied by the number of scrambler orientations (17,576) which comes to 105,456. So, instead of having to worry about which of the 10,000,000,000,000,000 day keys was associated with a particular set of chains, Rejewski could busy himself with a drastically simpler problem: which of the 105,456 scrambler settings was associated with the numbers of links within a set of chains? This number is still large, but it is roughly one hundred billion times smaller than the total number of possible day keys. In short, the task has become one hundred billion times easier, certainly within the realm of human endeavor.
Rejewski proceeded as follows. Thanks to Hans-Thilo Schmidt’s espionage, he had access to replica Enigma machines. His team began the laborious chore of checking each of 105,456 scrambler settings, and cataloguing the chain lengths that were generated by each one. It took an entire year to complete the catalogue, but once the Biuro had accumulated the data, Rejewski could finally begin to unravel the Enigma cipher.
Each day, he would look at the encrypted message keys, the first six letters of all the intercepted messages, and use the information to build his table of relationships. This would allow him to trace the chains, and establish the number of links in each chain. For example, analyzing the 1st and 4th letters might result in four chains with 3, 9, 7 and 7 links. Analyzing the 2nd and 5th letters might also result in four chains, with 2, 3, 9 and 12 links. Analyzing the 3rd and 6th letters might result in five chains with 5, 5, 5, 3 and 8 links. As yet, Rejewski still had no idea of the day key, but he knew that it resulted in 3 sets of chains with the following number of chains and links in each one:
4 chains from the 1st and 4th letters, with 3, 9, 7 and 7 links.
4 chains from the 2nd and 5th letters, with 2, 3, 9 and 12 links.
5 chains from the 3rd and 6th letters, with 5, 5, 5, 3 and 8 links.
Rejewski could now go to his catalogue, which contained every scrambler setting indexed according to the sort of chains it would generate. Having found the catalogue entry that contained the right number of chains with the appropriate number of links in each one, he immediately knew the scrambler settings for that particular day key. The chains were effectively fingerprints, the evidence that betrayed the initial scrambler arrangement and orientations. Rejewski was working just like a detective who might find a fingerprint at the scene of a crime, and then use a database to match it to a suspect.
Although he had identified the scrambler part of the day key, Rejewski still had to establish the plugboard settings. Although there are about a hundred billion possibilities for the plugboard settings, this was a relatively straightforward task. Rejewski would begin by setting the scramblers in his Enigma replica according to the newly established scrambler part of the day key. He would then remove all cables from the plugboard, so that the plugboard had no effect. Finally, he would take a piece of intercepted ciphertext and type it in to the Enigma machine. This would largely result in gibberish, because the plugboard cablings were unknown and missing. However, every so often vaguely recognizable phrases would appear, such as alliveinbelrin—presumably, this should be “arrive in Berlin.” If this assumption is correct, then it would imply that the letters R and L should be connected and swapped by a plugboard cable, while A, I, V, E, B and N should not. By analyzing other phrases it would be possible to identify the other five pairs of letters that had been swapped by the plugboard. Having established the plugboard settings, and having already discovered the scrambler settings, Rejewski had the complete day key, and could then decipher any message sent that day.
Rejewski had vastly simplified the task of finding the day key by divorcing the problem of finding the scrambler settings from the problem of finding the plugboard settings. On their own, both of these problems were solvable. Originally, we estimated that it would take more than the lifetime of the universe to check every possible Enigma key. However, Rejewski had spent only a year compiling his catalogue of chain lengths, and thereafter he could find the day key before the day was out. Once he had the day key, he possessed the same information as the intended receiver and so could decipher messages just as easily.
Following Rejewski’s breakthrough, German communications became transparent. Poland was not at war with Germany, but there was a threat of invasion, and Polish relief at conquering Enigma was nevertheless immense. If they could find out what the German generals had in mind for them, there was a chance that they could defend themselves. The fate of the Polish nation had depended on Rejewski, and he did not disappoint his country. Rejewski’s attack on Enigma is one of the truly great accomplishments of cryptanalysis. I have had to sum up his work in just a few pages, and so have omitted many of the technical details, and all of the dead ends. Enigma is a complicated cipher machine, and breaking it required immense intellectual force. My simplifications should not mislead you into underestimating Rejewski’s extraordinary achievement.
The Polish success in breaking the Enigma cipher can be attributed to three factors: fear, mathematics and espionage. Without the fear of invasion, the Poles would have been discouraged by the apparent invulnerability of the Enigma cipher. Without mathematics, Rejewski would not have been able to analyze the chains. And without Schmidt, codenamed “Asche,” and his documents, the wirings of the scramblers would not have been known, and cryptanalysis could not even have begun. Rejewski did not hesitate to express the debt he owed Schmidt: “Asche’s documents were welcomed like manna from heaven, and all doors were immediately opened.”
The Poles successfully used Rejewski’s technique for several years. When Hermann Göring visited Warsaw in 1934, he was totally unaware of the fact that his communications were being intercepted and deciphered. As he and other German dignitaries laid a wreath at the Tomb of the Unknown Soldier next to the offices of the Biuro Szyfrów, Rejewski could stare down at them from his window, content in the knowledge that he could read their most secret communications.
Even when the Germans made a minor alteration to the way they transmitted messages, Rejewski fought back. His old catalogue of chain lengths was useless, but rather than rewriting the catalogue he devised a mechanized version of his cataloguing system, which could automatically search for the correct scrambler settings. Rejewski’s invention was an adaptation of the Enigma machine, able to rapidly check each of the 17,576 settings until it spotted a match. Because of the six possible scrambler arrangements, it was necessary to have six of Rejewski’s machines working in parallel, each one representing one of the possible arrangements. Together, they formed a unit that was about a meter high, capable of finding the day key in roughly two hours. The units were called bombes, a name that might reflect the ticking noise they made while checking scrambler settings. Alternatively, it is said that Rejewski got his inspiration for the machines while at a cafe eating a bombe, an ice cream shaped into a hemisphere. The bombes effectively mechanized the process of decipherment. It was a natural response to Enigma, which was a mechanization of encipherment.
For most of the 1930s, Rejewski and his colleagues worked tirelessly to uncover the Enigma keys. Month after month, the team would have to deal with the stresses and strains of cryptanalysis, continually having to fix mechanical failures in the bombes, continually having to deal with the never-ending supply of encrypted intercepts. Their lives became dominated by the pursuit of the day key, that vital piece of information that would reveal the meaning of the encrypted messages. However, unknown to the Polish codebreakers, much of their work was unnecessary. The chief of the Biuro, Major Gwido Langer, already had the Enigma day keys, but he kept them hidden, tucked away in his desk.
Langer, via the French, was still receiving information from Schmidt. The German spy’s nefarious activities did not end in 1931 with the delivery of the two documents on the operation of Enigma, but continued for another seven years. He met the French secret agent Rex on twenty occasions, often in secluded alpine chalets where privacy was guaranteed. At every meeting, Schmidt handed over one or more codebooks, each one containing a month’s worth of day keys. These were the codebooks that were distributed to all German Enigma operators, and they contained all the information that was needed to encipher and decipher messages. In total, he provided codebooks that contained 38 months’ worth of day keys. The keys would have saved Rejewski an enormous amount of time and effort, shortcutting the necessity for bombes and sparing manpower that could have been used in other sections of the Biuro. However, the remarkably astute Langer decided not to tell Rejewski that the keys existed. By depriving Rejewski of the keys, Langer believed he was preparing him for the inevitable time when the keys would no longer be available. He knew that if war broke out it would be impossible for Schmidt to continue to attend covert meetings, and Rejewski would then be forced to be self-sufficient. Langer thought that Rejewski should practice self-sufficiency in peacetime, as preparation for what lay ahead.
Rejewski’s skills eventually reached their limit in December 1938, when German cryptographers increased Enigma’s security. Enigma operators were all given two new scramblers, so that the scrambler arrangement might involve any three of the five available scramblers. Previously there were only three scramblers (labeled 1, 2 and 3) to choose from, and only six ways to arrange them, but now that there were two extra scramblers (labeled 4 and 5) to choose from, the number of arrangements rose to 60, as shown in Table 10. Rejewski’s first challenge was to work out the internal wirings of the two new scramblers. More worryingly, he also had to build ten times as many bombes, each representing a different scrambler arrangement. The sheer cost of building such a battery of bombes was fifteen times the Biuro’s entire annual equipment budget. The following month the situation worsened when the number of plugboard cables increased from six to ten. Instead of twelve letters being swapped before entering the scramblers, there were now twenty swapped letters. The number of possible keys increased to 159,000,000,000,000,000,000.
In 1938 Polish interceptions and decipherments had been at their peak, but by the beginning of 1939 the new scramblers and extra plugboard cables stemmed the flow of intelligence. Rejewski, who had pushed forward the boundaries of cryptanalysis in previous years, was confounded. He had proved that Enigma was not an unbreakable cipher, but without the resources required to check every scrambler setting he could not find the day key, and decipherment was impossible. Under such desperate circumstances Langer might have been tempted to hand over the keys that had been obtained by Schmidt, but the keys were no longer being delivered. Just before the introduction of the new scramblers, Schmidt had broken off contact with agent Rex. For seven years he had supplied keys which were superfluous because of Polish innovation. Now, just when the Poles needed the keys, they were no longer available.
The new invulnerability of Enigma was a devastating blow to Poland, because Enigma was not merely a means of communication, it was at the heart of Hitler’s blitzkrieg strategy. The concept of blitzkrieg (“lightning war”) involved rapid, intense, coordinated attack, which meant that large tank divisions would have to communicate with one another and with infantry and artillery. Furthermore, land forces would be backed up by air support from dive-bombing Stukas, which would rely on effective and secure communication between the front-line troops and the airfields. The ethos of blitzkrieg was “speed of attack through speed of communications.” If the Poles could not break Enigma, they had no hope of stopping the German onslaught, which was clearly only a matter of months away. Germany already occupied the Sudetenland, and on April 27, 1939, it withdrew from its nonaggression treaty with Poland. Hitler’s anti-Polish rhetoric became increasingly vitriolic. Langer was determined that if Poland was invaded, then its cryptanalytic breakthroughs, which had so far been kept secret from the Allies, should not be lost. If Poland could not benefit from Rejewski’s work, then at least the Allies should have the chance to try and build on it. Perhaps Britain and France, with their extra resources, could fully exploit the concept of the bombe.
Table 10 Possible arrangements with five scramblers.
Figure 43 General Heinz Guderian’s command post vehicle. An Enigma machine can be seen in use in the bottom left. (photo credit 4.2)
On June 30, Major Langer telegraphed his French and British counterparts, inviting them to Warsaw to discuss some urgent matters concerning Enigma. On July 24, senior French and British cryptanalysts arrived at the Biuro’s headquarters, not knowing quite what to expect. Langer ushered them into a room in which stood an object covered with a black cloth. He pulled away the cloth, dramatically revealing one of Rejewski’s bombes. The audience were astonished as they heard how Rejewski had been breaking Enigma for years. The Poles were a decade ahead of anybody else in the world. The French were particularly astonished, because the Polish work had been based on the results of French espionage. The French had handed the information from Schmidt to the Poles because they believed it to be of no value, but the Poles had proved them wrong.
As a final surprise, Langer offered the British and French two spare Enigma replicas and blueprints for the bombes, which were to be shipped in diplomatic bags to Paris. From there, on August 16, one of the Enigma machines was forwarded to London. It was smuggled across the Channel as part of the baggage of the playwright Sacha Guitry and his wife, the actress Yvonne Printemps, so as not to arouse the suspicion of German spies who would be monitoring the ports. Two weeks later, on September 1, Hitler invaded Poland and the war began.