[AP94]
Marco Abate and Giorgio Patrizio,
Finsler Metrics, a Global Approach: with Applications to Geometric Function Theory
, Springer, New York, 1994.
[Amb56]
Warren Ambrose,
Parallel translation of Riemannian curvature
, Ann. of Math. (2)
64
(1956), 337–363.
MathSciNetCrossref[Ave70]
André Avez,
Variétés riemanniennes sans points focaux
, C. R. Acad. Sci. Paris Sér. A-B
270
(1970), A188–A191 (French).
[BCS00]
David Bao, Shiing-Shen Chern, and Zhongmin Shen,
An Introduction to Riemann–Finsler Geometry
, Graduate Texts in Mathematics, vol. 200, Springer, New York, 2000.
[Ber60]
M. Berger,
Les variétés Riemanniennes (1/4)-pincées
, Ann. Scuola Norm. Sup. Pisa (3)
14
(1960), 161–170 (French).
[Ber03]
Marcel Berger,
A Panoramic View of Riemannian Geometry
, Springer-Verlag, Berlin, 2003.
Crossref[Bes87]
Arthur L. Besse,
Einstein Manifolds
, Springer, Berlin, 1987.
[BBBMP]
Laurent Bessières, Gérard Besson, Michel Boileau, Sylvain Maillot, and Joan Porti,
Geometrisation of 3-Manifolds
, EMS Tracts in Mathematics, vol. 13, European Mathematical Society (EMS), Züurich, 2010.
[Bis63]
Richard L. Bishop,
A relation between volume, mean curvature, and diameter
, Notices Amer. Math. Soc.
10
(1963), 364.
[BC64]
Richard L. Bishop and Richard J. Crittenden,
Geometry of Manifolds
, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964.
[BW08]
Christoph Böhm and Burkhard Wilking,
Manifolds with positive curvature operators are space forms
, Ann. of Math. (2)
167
(2008), no. 3, 1079–1097.
[Boo86]
William M. Boothby,
An Introduction to Differentiable Manifolds and Riemannian Geometry
, 2nd ed., Academic Press, Orlando, FL, 1986.
[Bre10]
Simon Brendle,
Ricci Flow and the Sphere Theorem
, Graduate Studies in Mathematics, vol. 111, American Mathematical Society, Providence, RI, 2010.
[BS09]
Simon Brendle and Richard Schoen,
Manifolds with 1/4-pinched curvature are space forms
, J. Amer. Math. Soc.
22
(2009), 287–307.
MathSciNetCrossref[Car26]
Élie Cartan,
Sur une classe remarquable d’espaces de Riemann
, Bull. Soc. Math. France
54
(1926), 214–264 (French).
[Cha06]
Isaac Chavel,
Riemannian Geometry
, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 98, Cambridge University Press, Cambridge, 2006. A modern introduction.
[CE08]
Jeff Cheeger and David G. Ebin,
Comparison Theorems in Riemannian Geometry
, AMS Chelsea Publishing, Providence, 2008. Revised reprint of the 1975 original.
[CG71]
Jeff Cheeger and Detlef Gromoll,
The splitting theorem for manifolds of nonnegative Ricci curvature
, J. Differential Geometry
6
(1971), 119–128.
MathSciNetCrossref[CG72]
Jeff Cheeger and Detlef Gromoll.
On the structure of complete manifolds of nonnegative curvature
, Ann. Math. (2)
96
(1972), 413–443.
[Che75]
Shiu-Yuen Cheng,
Eigenvalue comparison theorems and its geometric applications
, Math. Z.
143
(1975), no. 3, 289–297.
[Che55]
Shiing-Shen Chern,
An elementary proof of the existence of isothermal parameters on a surface
, Proc. Amer. Math. Soc.
6
(1955), 771–782.
MathSciNetCrossref[CB09]
Yvonne Choquet-Bruhat,
General Relativity and the Einstein Equations
, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2009.
[Cla70]
Chris J. S. Clarke,
On the Global Isometric Embedding of Pseudo-Riemannian Manifolds
, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
314
(1970), no. 1518, 417–428.
[CM11]
Tobias H. Colding and William P. Minicozzi II,
A Course in Minimal Surfaces
, Graduate Studies in Mathematics, vol. 121, American Mathematical Society, Providence, RI, 2011.
[dC92]
Manfredo Perdigão do Carmo,
Riemannian Geometry
, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty.
[DF04]
David S. Dummit and Richard M. Foote,
Abstract Algebra
, 3rd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2004.
zbMATH[Fra61]
Theodore Frankel,
Manifolds with positive curvature
, Pacific J. Math.
11
(1961), 165–174.
MathSciNetCrossref[GHL04]
Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine,
Riemannian Geometry
, 3rd ed., Universitext, Springer-Verlag, Berlin, 2004.
[Gan73]
David Gans,
An Introduction to Non-Euclidean Geometry
, Academic Press, New York, 1973.
Crossref[Gau65]
Carl F. Gauss,
General Investigations of Curved Surfaces
, Raven Press, New York, 1965.
[Gra82]
Alfred Gray,
Comparison theorems for the volumes of tubes as generalizations of the Weyl tube formula
, Topology
21
(1982), no. 2, 201–228.
MathSciNetCrossref[Gra04]
Alfred Gray,
Tubes
, 2nd ed., Progress in Mathematics, vol. 221, Birkhäuser Verlag, Basel, 2004. With a preface by Vicente Miquel.
[Gre93]
Marvin J. Greenberg,
Euclidean and Non-Euclidean Geometries: Development and History
, W. H. Freeman, New York, 1993.
[Gre70]
Robert E. Greene,
Isometric Embeddings of Riemannian and Pseudo-Riemannian Manifolds
, Memoirs of the Amer. Math. Soc., No. 97, Amer. Math. Soc., Providence, 1970.
[Gro07]
Misha Gromov,
Metric Structures for Riemannian and Non-Riemannian Spaces
, Reprint of the 2001 English edition, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007. Based on the 1981 French original; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates.
[Gün60]
Paul Günther,
Einige Sätze über das Volumenelement eines Riemannschen Raumes
, Publ. Math. Debrecen
7
(1960), 78–93 (German).
[Ham82]
Richard S. Hamilton,
Three-manifolds with positive Ricci curvature
, J. Differential Geom.
17
(1982), 255–306.
MathSciNetCrossref[Ham86]
Richard S. Hamilton,
Four-manifolds with positive curvature operator
, J. Differential Geom.
24
(1986), no. 2, 153–179.
MathSciNetCrossref[Hat02]
Allen Hatcher,
Algebraic Topology
, Cambridge University Press, Cambridge, 2002.
[HE73]
Stephen W. Hawking and George F. R. Ellis,
The Large-Scale Structure of Space-Time
, Cambridge University Press, Cambridge, 1973.
[Hel01]
Sigurdur Helgason,
Differential Geometry, Lie Groups, and Symmetric Spaces
, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original.
[Her63]
Robert Hermann,
Homogeneous Riemannian manifolds of non-positive sectional curvature
, Nederl. Akad. Wetensch. Proc. Ser. A 66

Indag. Math.
25
(1963), 47–56.
MathSciNetCrossref[Hic59]
Noel J. Hicks,
A theorem on affine connexions
, Illinois J. Math.
3
(1959), 242–254.
[Hil71]
David Hilbert,
The Foundations of Geometry
, Open Court Publishing Co., Chicago, 1971. Translated from the tenth German edition by Leo Unger.
[Hop89]
Heinz Hopf,
Differential Geometry in the Large
, 2nd ed., Lecture Notes in Mathematics, vol. 1000, Springer, 1989. Notes taken by Peter Lax and John W. Gray; with a preface by S. S. Chern; with a preface by K. Voss.
[Ive92]
Birger Iversen,
Hyperbolic Geometry
, London Mathematical Society Student Texts, vol. 25, Cambridge University Press, Cambridge, 1992.
[Jos17]
Jürgen Jost,
Riemannian Geometry and Geometric Analysis
, 7th ed., Universitext, Springer, Cham, 2017.
[JP13]
Marek Jarnicki and Peter Pflug,
Invariant Distances and Metrics in Complex Analysis
, Second extended edition, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter GmbH & Co. KG, Berlin, 2013.
[Kaz85]
Jerry Kazdan,
Prescribing the Curvature of a Riemannian Manifold
, CBMS Regional Conf. Ser. in Math., Amer. Math. Soc., Providence, 1985.
[KL08]
Bruce Kleiner and John Lott,
Notes on Perelman’s papers
, Geom. Topol.
12
(2008), no. 5, 2587–2855.
MathSciNetCrossref[Kli61]
Wilhelm P. A. Klingenberg,
Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung
, Comment. Math. Helv.
35
(1961), 47–54 (German).
[Kli95]
Wilhelm P. A. Klingenberg,
Riemannian Geometry
, 2nd ed., De Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin, 1995.
[Kob72]
Shoshichi Kobayashi,
Transformation Groups in Differential Geometry
, Springer, Berlin, 1972.
Crossref[KN96]
Shoshichi Kobayashi and Katsumi Nomizu,
Foundations of Differential Geometry
, Wiley Classics Library, vol. I–II, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1963 and 1969 originals; A Wiley-Interscience Publication.
[LeeJeff09]
Jeffrey M. Lee,
Manifolds and Differential Geometry
, Graduate Studies in Mathematics, vol. 107, American Mathematical Society, Providence, RI, 2009.
[LeeAG]
John M. Lee,
Axiomatic Geometry
, Pure and Applied Undergraduate Texts, vol. 21, American Mathematical Society, Providence, RI, 2013.
[LeeSM]
John M. Lee,
Introduction to Smooth Manifolds
, 2nd ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013.
Crossref[LeeTM]
John M. Lee,
Introduction to Topological Manifolds
, 2nd ed., Graduate Texts in Mathematics, vol. 202, Springer, New York, 2011.
Crossref[LP87]
John M. Lee and Thomas H. Parker,
The Yamabe problem
, Bull. Amer. Math. Soc. (N.S.)
17
(1987), 37–91.
MathSciNetCrossref[MP11]
William H. Meeks III and Joaqun Pérez,
The classical theory of minimal surfaces
, Bull. Amer. Math. Soc. (N.S.)
48
(2011), 325–407.
MathSciNetCrossref[Mil63]
John W. Milnor,
Morse Theory
, based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963.
[Mil68]
John W. Milnor,
A note on curvature and fundamental group
, J. Differential Geometry
2
(1968), 1–7.
[Mil76]
John W. Milnor,
Curvatures of left invariant metrics on Lie groups
, Advances in Math.
21
(1976), no. 3, 293–329.
[Mor98]
Frank Morgan,
Riemannian Geometry: A Beginner’s Guide
, 2nd ed., A K Peters Ltd., Wellesley, MA, 1998.
[MF10]
John W. Morgan and Frederick Tsz-Ho Fong,
Ricci Flow and Geometrization of 3-Manifolds
, University Lecture Series, vol. 53, American Mathematical Society, Providence, RI, 2010.
[MT14]
John W. Morgan and Gang Tian,
The Geometrization Conjecture
, Clay Mathematics Monographs, vol. 5, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2014.
[Mun56]
James Raymond Munkres,
Some Applications of Triangulation Theorems
, ProQuest LLC, Ann Arbor, MI, 1956. Thesis (Ph.D.)-University of Michigan.
[Mye41]
Sumner B. Myers,
Riemannian manifolds with positive mean curvature
, Duke Math. J.
8
(1941), 401–404.
MathSciNetCrossref[MS39]
Sumner B. Myers and Norman E. Steenrod,
The group of isometries of a Riemannian manifold
, Ann. of Math. (2)
40
(1939), no. 2, 400–416.
[Nas56]
John Nash,
The imbedding problem for Riemannian manifolds
, Ann. Math.
63
(1956), 20–63.
MathSciNetCrossref[O’N83]
Barrett O’Neill,
Semi-Riemannian Geometry with Applications to General Relativity
, Academic Press, New York, 1983.
[Pet16]
Peter Petersen,
Riemannian Geometry
, 3rd ed., Graduate Texts in Mathematics, vol. 171, Springer, Cham, 2016.
[Poo81]
Walter A. Poor,
Differential Geometric Structures
, McGraw-Hill, 1981.
[Pre43]
Alexandre Preissman,
Quelques propriétés globales des espaces de Riemann
, Comment. Math. Helv.
15
(1943), 175–216 (French).
[Rad25]
Tibor Radó,
Über den Begriff der Riemannschen Fläche
, Acta Litt. Sci. Szeged.
2
(1925), 101–121 (German).
[Rat06]
John G. Ratcliffe,
Foundations of Hyperbolic Manifolds
, 2nd ed., Graduate Texts in Mathematics, vol. 149, Springer, New York, 2006.
[Sco83]
Peter Scott,
The Geometries of 3-Manifolds
, Bull. London Math. Soc.
15
(1983), 401–487.
[Spi79]
Michael Spivak,
A Comprehensive Introduction to Differential Geometry
, Vol. I–V, Publish or Perish, Berkeley, 1979.
[Str86]
Robert S. Strichartz,
Sub-Riemannian geometry
, J. Differential Geom.
24
(1986), no. 2, 221–263.
MathSciNetCrossref[Syn36]
John L. Synge,
On the connectivity of spaces of positive curvature
, Q. J. Math.
os-7
(1936), 316–320.
Crossref[Thu97]
William P. Thurston,
Three-Dimensional Geometry and Topology. Vol. 1
, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy.
[Tu11]
Loring W. Tu,
An Introduction to Manifolds
, 2nd ed., Universitext, Springer, New York, 2011.
[Wol11]
Joseph A. Wolf,
Spaces of Constant Curvature
, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011.