London: 1952
Both my parents were born in 1952. My maternal grandfather, Selwyn Bate, was a local solicitor in Tamworth, my home town, and a lecturer at Birmingham Law School. On occasion – and despite his best efforts to avoid it – he had to travel into London. My aunt Claire remembers him once having to take the train to London carrying an Elizabethan legal charter, written on sheep’s hide, to settle a dispute in the High Court. He hated the capital. Too many people and too dirty. He would wash as soon as he returned home. I used to assume when hearing these stories that it was down to a kind of inverse snobbery. As a Lancastrian, he perhaps considered Tamworth – in the Midlands – to be as far south as he wanted to go. Then I learned of the Great Smog of 1952, and suddenly, the fact that Grandpa Bate avoided London like the plague made a lot of sense.
The early winter weather in London in 1952 had been very cold, with heavy snowfall spreading across the whole of southern England. To keep warm, Londoners would burn large quantities of coal in their homes. During a particularly cold spell like this one, most households would ‘bank up’ the fire at night with coal dust so that it would last until morning. Electricity was provided by inner-city power stations at Battersea and the South Bank, burning coal and belching smoke from chimneys taller than cathedral spires. In winter, not only were people burning more fuel and creating more smoke, but conditions for a ‘temperature inversion’ would arise: if the air close to the ground is cooler than the air higher above, it becomes trapped. With a clear, windless sky and moist, damp ground, a fog also forms. And London had long been famous for them: ‘pea-soupers’ in Cockney slang, romanticised in the stories of Dickens and Conan Doyle and paintings by Turner and Monet (who preferred to visit in winter, transfixed by the smog’s swirling yellow light).
On Friday 5 December 1952, the familiar thick fog appeared once again across London. But this one didn’t lift the following day, or the next. A prolonged temperature inversion saw smoke concentrations reach 56 times the ‘normal’ level. The official records show visibility reduced in some places to just one yard (91cm), the lowest ever recorded in the city. People couldn’t even see their own feet. Blinded commuters stepped off bridges into the icy Thames and from railway platforms into the path of oncoming trains. Within 12 hours of the smog’s arrival, people in their thousands began having respiratory problems and hospital admissions increased dramatically.
According to Met Office records, the smog spread for 13 miles and contained the following pollutants: 1,000 tonnes of smoke particles (which we’d now call ‘black carbon’ or PM10), 2,000 tonnes of carbon dioxide, 140 tonnes of hydrochloric acid and 14 tonnes of fluorine. Most hellish of all, 370 tonnes of sulphur dioxide were converted, suspended by the water droplets in the fog, into 800 tonnes of sulphuric acid. It hung like this, thick in the air, for five days.
At Sadler’s Wells Theatre, a performance of La Traviata was stopped when the audience could no longer see the stage. At Smithfield livestock market, farmers wrapped whisky-soaked hessian masks over their cows to try and protect them. The smog stuck to windscreens like paint, forcing drivers to abandon their vehicles. The Fleet Street correspondent of the Northern Whig newspaper reported on Saturday 6 December that ‘it has seeped into the shops and offices, where lights have been on all day … The smoky “peasoupers” not only damage the health of the inhabitants, but the insidious chemicals they contain eat into the stones and brick of buildings, and burn and blacken the trees.’ There was also a nervous jokiness to the early reports. The Daily Telegraph reported the first casualty to be ‘A mallard, presumably blinded by the fog, [which] crashed into Mr John Maclean as he was walking home in Ifield Road, Fulham. Both were slightly injured.’ The Times leader column was even more dismissive, proclaiming that ‘fogs are ancient Britons. They met the boat when the ancestors of Boadicea landed … they roam about … as freely as they did before anyone had heard of smoke abatement.’ Perhaps taking their lead, the political response from Churchill’s Conservative government was initially high-handed. Harold Macmillan, the Housing Minister, told the House of Commons that ‘broad economic considerations needed to be taken into account’ – in other words, the needs of industry come before worries about the weather.
Roy Parker, a third-year student at the London School of Economics at the time, remembered in ‘The Big Smoke: Fifty years after the 1952 London Smog’, a witness seminar held at the Centre for History in Public Health on 10 December 2002, that the early news reports were mostly concerned with the cancellation of sporting fixtures: ‘neither I nor they paid much attention to the health consequences for people. I should have realised the full magnitude of the catastrophe, because my father, who was a driver on a steam locomotive, and had been partially gassed during the 1914–18 war, had many of the symptoms one associates with … the inhalation of the coal dust and the sulphur. Most of the time he had difficulty breathing. He was 56 years old, and when I saw him that weekend he was in great distress, gasping for breath, struggling, [but] insisting that he would go to work on his bicycle … It’s hard now to appreciate how general the experience of chronic bronchitis was for the industrial working class in this country … in my family, all the men had symptoms of this kind.’1
By the fourth day, the tone had changed. The Hartlepool Northern Daily Mail called it the ‘great black-out fog … so dense that most police patrol cars were immobilised, and police answered 999 calls by going on foot.’ The cattle at Smithfield market were now dying, with others being prematurely slaughtered ‘at the request of the owners’. A Fleet Street reporter for one of the Monday morning papers declared: ‘This is no mere pea soup: everything is in it – the hors d’oeuvre, the fish, the joint, the sweet, the savoury, the black coffee and the waiter’s scowl. It stings the eyes, and fouls the breathing … In Trafalgar Square I could hear the fountains, but they were invisible … [a colleague] found a man searching for a Tube station in the middle of Blackfriars Bridge.’
When the fog lifted on the fifth day, Tuesday 9 December, reports of the overflowing hospitals started to filter through, and the significance of the event began to dawn. As at the Donora, Pennsylvania disaster, just four years previously, funeral parlours ran out of coffins and florists of the flowers to accompany them. Due to the traffic congestion and near-zero visibility, many more died at home than had made it to hospital. Rosemary Merrit recalled for the BBC World Service in 2012 that her father walked a mile and a half home from work through the smog. That night he ‘coughed so hard that he turned blue, and my mother woke up the neighbours to help … we couldn’t get him to hospital because there were no ambulances.’ He died the next day. His body was kept in the front room of their house for three weeks until an overworked undertaker was finally able to bury him, just before Christmas. ‘I never liked to be in the front room after that,’ she said. ‘It was always very cold.’
In that one week alone, 4,703 people died in London – 3,000 more than usual. An environmental catastrophe, the city’s own, famous fog, had caused more civilian casualties in London than any five-day German bombing campaign had managed just a few years before. It wasn’t only the elderly and infirm who were struck down. One ambulance carried a 21-year-old sailor on active service. The doctor treating him, Dr Horace Pile, later recalled for the UK Channel 4 documentary Killer Fog in 1999 that he had ‘never seen anything like it from a young man of that age, with breathing difficulties and a desperately failing heart’. When the ambulance reached the hospital it was already full up with victims. So was the second. When the ambulance set off in search of a third, the sailor died en route. The eventual number of fatalities is believed to have reached some 8,000 to 12,000, plus thousands more cases of lifelong health problems including lung and heart diseases.
In the 1930s and 1940s, London’s above-ground public transport was largely served by emission-free electric trams, including double-deckers. However, they were rapidly usurped by the internal combustion engine. The last London electric tram was replaced by a diesel bus on 5 July 1952, just five months before the Great Smog. By December, 8,000 new diesel buses were on the roads, adding their fumes to the winter fog. Dr Barry Gray, a chest physician at Kings College Hospital who was interviewed for the Killer Fog documentary, described the change from electric trams to diesel buses in the 1950s as ‘a disaster [that] has had a huge impact on the health of Londoners’.
After Roy Parker’s personal experiences as a student during the Great Smog, he dedicated his career to air pollution research. He calculated that there were about 12 million domestic coal fires in the UK in 1952. There were also 20,000 steam trains burning low-quality coal, while Battersea power station alone burnt 10,000 tonnes of coal every week. The idea of having no petrol or diesel cars on our roads today seems as hard to imagine as the banishment of steam trains and coal fires did to a Londoner in the 1950s. But remarkably, in little more than a decade, that’s exactly what happened. In 1953 a Committee on Air Pollution reported that there was a clear link between pollution and respiratory diseases, laying the foundations for the UK’s Clean Air Act (1956). A complete modernisation of Britain’s railway network was announced in 1955, effectively bringing to an end the era of the coal-fired steam engine. Battersea power station eventually closed in 1975. By the late 1970s, London’s ‘pea-soupers’ were a thing of the past. Professor Peter Brimblecombe chaired the witness seminar at the Centre for History in Public Health in 2002. I asked him if there was a general feeling at that event, on the 50th anniversary of the Great Smog, that this problem had now been solved. ‘Oh definitely,’ he replied immediately. ‘I think there was definitely that feeling … they believed it had been transformed enormously.’
LONDON: 2010s
On a cold April morning in 2016, in London’s Trafalgar Square, a protester climbed up the city’s iconic landmark, Nelson’s Column. Alison Garrigan had been planning her ascent for months. In the watery light of sunrise, she and an accomplice fitted a gleaming white gas mask to Admiral Lord Nelson’s blackened, sooty face. As a veteran Greenpeace activist, she hoped to highlight the state of London’s air pollution. The Royal College of Physicians and the Royal College of Paediatrics and Child Health had recently estimated that up to 40,000 premature deaths were caused by air pollution in the UK each year, 10,000 of whom were Londoners. Children in some polluted parts of London had 5 to 8 per cent lower lung capacity than average in their age range. In 2013, nine-year-old Ella Kissi-Debrah, from south London, died following repeated hospital admissions for asthma, leading to calls for an inquest into the part air pollution played in her death* . In January 2017, Baroness Jones of the House of Lords levied the accusation of ‘criminal neglect by a government that has no desire to protect the health of its citizens’ in an article in The Times headlined ‘Calls for curbs on traffic after 10 days of smog left 300 dead’.
So, given that London had supposedly solved this problem in the 1970s, what had gone so badly wrong? In a 1972 conservation handbook ‘The New Battle Of Britain’, the author H. F. Wallis fires a warning flare from history: ‘Los Angeles-type “smog” – caused by the action of sunlight on petrol fumes – is possible in Britain … new cars on our roads will still be able to poison the air to the same extent as now and, of course, there will be many more of them.’2 Wallis noted that between 1957 and 1967 ‘the British Rail passenger network slumped from 14,622 miles to just under 10,000 miles’ while one-fifth of bus services disappeared. People had no choice but to switch to private cars. At his time of writing, there were just 14 million cars on British roads. By the end of 2017, there were 37.7 million licensed vehicles in Great Britain, around 31 million of which were cars. And 12.4 million of those – almost as many as all the cars in Wallis’s day – were diesel cars.
When Professor David Newby began studying air pollution in the early 2000s, he assumed – like the Great Smog survivors – that the health impact of air pollution was yesterday’s news. By the 1990s and 2000s, the Victorian inner-city coal power stations that once choked London had metamorphosed into cultural centres; the Tate Modern and Battersea power station now pumped out tourist dollars, not smoke. They stood as towering testaments to our more enlightened times. But Newby, now a professor of cardiology at the British Heart Foundation Centre of Research Excellence, was about to undertake a study that would completely transform his, and our, understanding of air pollution. In 2007, Newby and his team took healthy volunteers, put them in an exposure chamber, strapped them to a cycling machine and told them to start pedalling. The chamber was then filled with diesel exhaust fumes. ‘People did question my ethics,’ he admits. ‘But I pointed out that the pollution levels outside on the street they walked down to get to the study were probably worse.’ What they discovered was truly shocking. On exposure to ordinary street levels of vehicular exhaust fumes, blood became thicker and more likely to clot. Signs of stress on the heart were immediately apparent. Blood pressure went up and arteries visibly thinned. It was remarkably similar to cigarette smoking – something Newby calls ‘self-induced air pollution’ – except that, with street pollution, there is no option to quit. ‘People were dying not of asthma but of heart disease and strokes caused by air pollution … Many people were surprised, including me.’
Poor air was not confined to the history books. In fact, there are more pollution particles in the air now than during London’s Great Smog. The difference is that the particulate matter (PM) from modern pollution sources is too small to see.
Almost two-thirds of the population in the UK are living in areas with air pollution levels above EU legal limits. Greenwich councillor Dan Thorpe, a local primary school teacher by day and an elected Greenwich borough councillor the rest of the time, told me, ‘My school, Windrush Primary School, is right by the Thames Barrier, so we’ve got the Woolwich Ferry and the roundabout at one end, the industrial estate behind … they stack the heavy goods vehicles [onto the ferry], and when they enter the roundabout all it takes is one minor incident and then the traffic backs up and you have a major [pollution] incident … Once you get that it’s a sort of Armageddon situation.’
Another long-time south Londoner, Nick Hussey, grew up cycle racing. While his friends were into football, his idols were the Tour de France winners Miguel Induráin and Greg LeMond. Since then he’d always been a cyclist, his racing dreams gradually giving way to the more ordinary life of a cycling commuter. In May 2005, aged 32 and living in London, his ‘hay fever’ started. ‘I can remember the prickling, stinging eyes, not being able to breathe properly,’ he tells me. ‘Not long after that I started to develop problems with eating certain foods. I seemed to be having a big histamine battle. I began to find cycling a struggle, particularly in warmer months. But it didn’t quite seem to match the hay fever pattern. I didn’t really understand it.’ Living close to a major road in south-west London, his breathing became so bad he twice ended up in A&E. ‘The NHS actually pushed me through the system quite quickly to find out what was wrong. They found I actually had far larger than average lung capacity, so I had no right to have breathing problems. They took tests and narrowed down the cause. They ruled out pollen. They ruled out diet.’ Finally, a specialist in a drab hospital consulting room delivered the news. ‘He just said “Yep, it’s air pollution: welcome to London.” Like it was the most normal thing in the world, as if he saw it every single day.’ He sounds upset when he tells me this. ‘If it’s that simple and obvious, why don’t we know more about it? And why aren’t people angrier about it?’
Under EU law, a city is allowed to breach hourly maximum limits for nitrogen dioxide (NO2) up to 18 times in a calendar year. In 2016 it took just seven days for London to breach that annual limit. In 2017, it was down to five days, using up its annual allowance on 5 January. In October 2017, the government’s plan to cut NO2 pollution was so lacklustre that it was deemed illegal and inadequate by the High Court. Even the United Nations Human Rights Council got involved, producing a 22-page report on air pollution in the UK, which estimated that the impact of poor air quality cost the country about £18.6 billion per year in health costs. Its report in 2017 was damning: ‘Air pollution continues to plague the United Kingdom … Children, older persons and people with pre-existing health conditions are at grave risk of mortality, morbidity and disability, with magnified risks among the poor and minorities.’3
Rather than learning from the lessons of the Great Smog, in the 2000s London became the global epicentre for diesel exhaust fumes, one of the most potent sources of NO2 and particulate matter pollution.† In 1950, there were around 35 million cars in the entire world. Today, there are nearly as many in the UK alone. Meanwhile domestic wood and coal fires, banished from inner cities by the Clean Air Act, are making an unlikely comeback. Re-branded as ‘biomass burners’ using ‘renewable fuel’, they have been actively encouraged. A government consultation document in 2018 acknowledged that an ‘increase in burning solid fuels in our homes is having an impact on our air quality and now makes up the single largest contributor to our national PM emissions’. In central London, wood burning accounts for up to 31 per cent of the urban-derived PM2.5 – probably for the first time since the 1950s.
The UN Human Rights Council report concluded, ‘by neither taking action as expeditiously and effectively as possible, nor taking all possible measures to reduce infant mortality and to increase life expectancy, the United Kingdom Government has violated its obligations to protect life, health and the development of children in its jurisdiction.’ Out of 51 UK towns and cities listed in the 2018 WHO air quality database, 44 breach the WHO recommended PM2.5 limits.‡
The Beijing ‘Airpocalypse’
In 2008, the US embassy in Beijing made a controversial decision. In a country where no official air pollution data was provided to its citizens, the US embassy installed an air pollution sensor – a MetOne BAM 1020 and Ecotech EC9810 monitor, to be precise – on its rooftop. Later that year, it set up a Twitter account, @beijingair, to automatically tweet the PM2.5 level on the hour, every hour. Despite repeated requests by the Chinese authorities to take it down, the embassy continued releasing its PM2.5 readings. Vice Minister of Environmental Protection Wu Xiaoqing told a press conference, ‘Diplomats are obligated to respect and abide by the [local] laws and regulations … We wish those embassies and consulates will respect China’s laws and stop publishing air quality data.’ Mark Toner, of the US State Department, retorted: ‘We provide the American community, both our embassy and consulate personnel … information it can use to make better daily decisions regarding the safety of outdoor activities.’§
The reasons for doing so were obvious. The skies across China, and the northern Hebei Province in particular, were getting greyer by the year. In 2004 the Chinese investigative journalist Chai Jing asked a small child whether they had ever seen stars? Her answer was no. Have you ever seen a blue sky? ‘Slightly blue,’ the child said. Have you ever seen white clouds? ‘No.’ By 2009, China’s Environmental Protection Department carried out a pilot project in its major cities monitoring for ‘haze’ – a euphemism for smog, before smog was officially acknowledged – and discovered the number of annual haze days ranged from a low of 51 days in the year to a high of 211 days.
‘When I first noticed it, when you could really start to see it, was in the late 1990s,’ says American businessman Manny Menendez, when we meet in Beijing in December 2017. Manny has been working in China ever since it opened its borders to international trade, brokering the very first joint-venture deal between the US and China in 1980. ‘I remember in the early days … industry was in the heart of the city, because it was easy to [access]. From a sustainability or urban design point of view, that just doesn’t work.’ Decades of working in China, Manny admits, have caused him health problems. ‘I get a wheeze. I have a mask and I will wear a mask. I don’t wear it as much as I should. If the emissions are bad and it is really a high PM2.5 count …’ he pauses to cough when saying this, as if triggered by the thought, ‘… then I will get a wheeze that will last at least a week to 10 days. It won’t go away.’ He has business associates who have moved their families out of Beijing because they ‘didn’t want them to grow up with respiratory problems’.
When the Institute of Public & Environmental Affairs (IPE), a Beijing-based NGO, published its first Air Quality Transparency Index (AQTI) in 2010, there were no daily air quality readings available for any city in China. The IPE report had to make use of industrial data and the scant figures included in the government’s annual ‘Report on the State of the Environment in China’, which gave no granularity of detail beyond the percentage of (unnamed) cities that met the (undefined) national standards of grades 1 to 3. In response, the first IPE report didn’t pull any punches, to the surprise of many in China and observers in the West: ‘In recent years, air pollution has become one of the most pressing environmental problems faced by Chinese cities,’ stated the IPE in 2010, becoming one of the first organisations to say so publicly. ‘Bad air quality not only impacts the lives of hundreds of millions of urban residents but also threatens their health and safety. China is undergoing a period of rapid industrial and urban development, which is largely the cause of air pollution in many of its cities … Currently, China has not yet formulated a comprehensive national air pollution and health monitoring network.’ Unlike the vague government report, the IPE listed the main culprits: ‘Coal smoke pollution … Sulfur dioxide (SO2) and total suspended particle pollution problems in urban areas … the number of motor vehicles increasing the severity of exhaust pollution. Air pollution problems such as haze, photochemical smog and acid rain … becoming more prominent day by day.’
Meanwhile the US embassy air quality monitor kept on tweeting. Twitter itself had been blocked by China’s Great Firewall in 2009, but several mobile phone apps and Weibo (the Chinese version of Twitter) posted the @beijingair readings anyway. If PM2.5 readings went above 200 micrograms per cubic metre of air (mg/m3), the @beijingair account would automatically issue a ‘very unhealthy’ warning; above 400mg/m3, it became ‘hazardous’. Above 500mg/m3, however, was deemed so unlikely that it was carelessly programmed to announce that the air was ‘crazy bad’. On 18 November 2010, the unlikely happened. The first ‘crazy bad’ warning was issued at 8 p.m., as the reading tipped into 503mg/m3 (it peaked the next day at 569mg/m3) – much to the embarrassment of both the US embassy and the Chinese authorities. The message was swiftly sanitised to ‘beyond reading’, but the damage was done. The ‘crazy bad’ message spread like wildfire. Chinese social media started to pick up on this and started re-tweeting this on Weibo,’ recalls Kate Logan, director at IPE, when I visit IPE’s Beijing office. ‘Chinese citizens were starting to pay attention.’
Then came the ‘Airpocalypse’ of 2013. Whereas the US embassy had set the Twittersphere buzzing with a 500mg/m3 reading in 2010, on 12 January 2013 it was reporting readings of over 800mg/m3. Even the Beijing Municipal Environmental Protection Bureau, which had by now begrudgingly started to release some official readings, showed PM2.5 levels exceeding 700mg/m3. Liam Bates, a Swiss-British expat living in Beijing, recalls: ‘It felt like 6 p.m. when the sun is setting and everything starts to go dark – but it was actually lunchtime. It was just nuts. It actually did feel like the apocalypse – it was the middle of the day, and the sky was going black … people started really freaking out … Even people who were [previously] sceptical were like, “OK, this is really messed up”.’
From 10 to 14 January, the mg/m3 reading never dropped below three figures; the whole month averaged around 200mg/m3. To put that into context, that is thicker than the air found inside the average airport smoking lounge (167mg/m3, according to a 2012 US study). The WHO sets a health-based daily limit of just 25mg/m3. During the Airpocalypse, the South China Morning Post reported that Beijing Children’s Hospital was receiving more than 7,000 patients a day, with the number of children being treated for respiratory ailments hitting a five-year high.
In the year of the Airpocalypse, the International School of Beijing, a private school for the children of expats and wealthy locals, erected a huge pressurised dome over its outdoor playground to keep out the city’s now unbreathable air. The dome’s structure is kept aloft by huge pressurisation fans that filter the air, allowing its fee-paying pupils to play ‘outside’ once more. Also that year, drink cans filled with compressed PM-free air, available in multiple ‘flavours’ including ‘Pristine Tibet’, were sold on the streets in Beijing. It would have been the perfect piece of performance art, were it not for the fact that the guy who made the cans, Chen Guangbiao, was an entrepreneur at the height of China’s economic boom. He went on to sell 12 million cans, making $7 million (over £5 million). People were gasping for cleaner air and willing to pay for it.
The Airpocalypse wasn’t, in reality, a single air pollution event. It was simply the worst of many that happened like clockwork every winter. In the 30 years to 2015, lung cancer rates in China increased by 465 per cent, during a period when tobacco smoking rates had actually gone down. In 2013, an 8-year-old girl in Jiangsu became China’s youngest lung cancer patient; the doctor treating her believed it was caused by air pollution exposure. During the 2015 Beijing Marathon, six people suffered heart attacks as a result of PM2.5 levels that day. A journal paper that year found that on Beijing’s worst days, an ordinary citizen would breathe air pollution equivalent to smoking 25 cigarettes. The worst day recorded in 2015 in the Chinese city of Shenyang saw PM pollution reaching 1,400mg/m3 (almost three ‘crazy bad’ days rolled into one) – equivalent to smoking 64 cigarettes. Even the most hardened chain-smoker would struggle to smoke that many.‖ The difference of course was that in Shenyang, the city’s infants and infirm were effectively chain-smoking too.
China’s smog had managed to encapsulate both London’s past and present predicaments: domestic coal and solid fuel smoke, industrial pollution and modern transportation fumes. China only had 18 million vehicles on its roads as recently as 2001; by 2015, vehicle ownership had reached 279 million.
Delhi, 2017
On 6 November 2017, Belgium’s King Philippe and Queen Mathilde attended a ceremony in Delhi. Commemorating Indian soldiers who fought in Flanders during the First World War, a guard of honour was shrouded in a haze reminiscent of the smoke from artillery fire and mustard gas exactly a century before. However, this wasn’t planned as a re-enactment. At 11 a.m. that day, PM2.5 levels at the US embassy in Delhi reached an asphyxiating 986mg/m3. When Prime Minister Modi posed with the Belgian royal couple for a group photograph, they could no longer see the guard of honour. The next day, PM levels peaked at 1,486mg/m3 – amongst the highest ever recorded. The level wouldn’t dip below triple figures until 17 November (and even then, only briefly).
According to the Delhi-based non-profit Centre for Science and Environment, ‘the key contributors to this smog in Delhi and its vicinity were vehicles; unchecked construction and road dust; garbage burning; burning of paddy residues by farmers in Punjab, Haryana … near-still weather conditions without wind; the onset of winter; and of course, the Diwali firecrackers’. In response, Arvind Kejriwal, the city’s chief minister, ordered schools to close for three days, halted construction and demolition work for five days and shut down the city’s central Badarpur coal plant for 10 days. The international press ran headlines such as ‘“I feel helpless”: Delhi residents on the smog crisis’ (Guardian, 8 November 2017) and ‘Air quality in New Delhi “worse than smoking 50 cigarettes a day”’ (Sky News, 11 November 2017).
On 19 November, the Indian TV channel NDTV opened its debate programme with the following impassioned intro: ‘This week, if you live in North India you probably wish you didn’t as a blanket of smog-poisoned toxic air descended over city after city. Yet life seems to continue as usual. When air quality levels go from severe to very poor we actually cheer … there’s silence from the very top with the environment ministers saying “at least it’s not as bad as the Popol gas tragedy”, even as study after study revealed how millions of Indians are dying of this pollution. How can we as citizens, and government health care professionals, come together to save ourselves from this health emergency?’4
On 22 November, I arrive in Delhi. As my flight begins its descent, a blanket of grey cloud awaits below for the plane’s wings to slice through. As we get lower, however, the grey looks too flat, too uniform to be cloud. And it is translucent – the buildings can be seen through it, like pebbles in the bottom of a muddy puddle. It dawns on me that it is a sunny, cloudless day: this is the smog.
At the airport I seek out a local SIM card for my phone and order a taxi – an ingrained guilt nags at me for not using public transport, but the car is integral to the story of modern Delhi. I need to see the roads for myself. The traffic moves in a stop-start stutter, rarely less than four or five rows deep, irrespective of how many lanes there actually are, each driver trying to fill the smallest gaps that appear, seeking an imaginary advantage. On the back seat of the cab, my Laser Egg shows PM2.5 above 300mg/m3: levels I have never personally experienced before. I make a mental note to do everything as slowly as possible to keep my breathing and heart-rate down. In the coming days, I become familiar with a constant sound on the streets of Delhi: a hacking clearing of catarrh. Drivers and pedestrians alike are forced to clear their mucus and spit it out onto the ground. It would seem rude if it wasn’t so necessary. At points during the trip I find myself doing so, too.
At my B&B, my host Vandana welcomes me with toast and hot tea (she clearly knows the British well). ‘What a great day to have arrived,’ she exclaims. ‘The smog has gone!’ ‘Gone?’ I reply, taken aback, given the milky gloom in the sky and my Egg readings. ‘Oh yes. Last week it was around 1,000,’ she says, referring to the AQI.¶ ‘It’s now only 200 or so. It lifted a day or so ago.’ Still she advises I buy a facemask, if only for when I walk beside the roads. ‘Your throat will probably feel sore at the end of the day,’ she says, ‘but if it does – just warm some water in the kettle and gargle it. It’s like taking a bath. It usually does the trick just fine.’ When she leaves me to unpack, I reach for the indoor air purifier in the room and turn it up a notch. But as the curtains flutter around loose-fitting window frames, I know it won’t do much good. When I go to bed, my Egg never dips below 70mg/m3. The next morning, a handful of labourers are demolishing the block of flats opposite my apartment, by hand, brick by brick. They light a fire to keep warm and cook on. I can’t see what they are burning but it smells sickly sweet. My Egg reading rises above 200mg/m3.
Later, at the Indian Institute of Technology [IIT], large expanses of lawn and private roads loop around 1970s concrete department blocks, few more than three stories, spanning the immediate horizon. On the second floor of the Civil Engineering block I look for the brown door with the nameplate ‘Professor Mukesh Khare’.
‘I joined IIT Delhi as a professor in 1991, and since then I have been working in the area of air quality,’ Prof Khare tells me. ‘Delhi used to have a problem with CO [carbon monoxide] in the 1990s. But … the problem now is NO2 and CO, because of the high temperature fuel, and also PM2.5. Diesel is another contributor.’ Delhi was recently ranked the most polluted major city in the world for ambient air pollution. The official annual mean PM2.5 level in Delhi in 2014 was 153mg/m3, 15 times over the WHO guideline, with daily levels often exceeding 550mg/m3 (above Beijing’s ‘crazy bad’ level of 500).
When I visit the Central Road Research Institute (CRRI), Dr Niraj Sharma, senior principal environmental scientist, who has studied road emissions for the past 25 years, reaches into his desk drawer. ‘I am very fond of collecting the newspaper cuttings,’ he explains. ‘You take a glance at these.’ He pulls out a thick pile of newspaper articles that he has carefully cut out. I read some of them aloud: ‘Air quality improves slightly in Delhi, falls to very poor again’, ‘Less pollution in Delhi this Diwali, but Air Quality still bad, way beyond safe levels’, ‘Government says air pollution spiked after fireworks started’, ‘Low wind speed keeps Delhi air very poor’, ‘Delhi, you’re killing me’, ‘Smog chokes city, doctors declare health emergency’. Would you agree with that, I ask – is it a health emergency? ‘Yes. This time I will say. For the first time in 25 years, around 10 days ago, I felt sort of suffocation outdoors … I’ve felt discomfort [before] many times, but now I felt choking.’
The population of Delhi, the second-largest city in the world at the time of writing, is forecast by the UN to grow from 24.9 million in 2014 to 36 million in 2030. As the city expands, so does the number of cars and roads. Dr Sharma tells me that in 2010 the number of vehicles in Delhi was approximately 6 million; ‘Now it is 10 million.’ Vehicle pollution has been found to account for around 72 per cent of total air pollution in Delhi, compared to just 23 per cent in 1970–71. Other Indian cities didn’t choose the same route to development. Greater Mumbai only saw an increase from 1 million to 1.7 million vehicles over the same period, despite having a similarly large population of 20.7 million.
Shubhani, a Delhi businesswoman, tells me, ‘Every year you see that kids are going on to nebulisers, they are coughing, going off sick – especially the young ones. One of my friends has her kid perpetually on some kind of medication. And there is really nothing else [as a cause], other than the air that we breathe.’ Keen to show me some evidence, she searches for an image she saved on her phone. It is a newspaper front page from a couple of months previously, showing the leading causes of death in India: in 1990, the top five were diarrhoea, lower respiratory complications, pre-term birth complications, TB and measles. By 2016, heart disease was suddenly top of the list, making up 8.7 per cent of the total disease burden, compared to only 3.7 per cent in 1990.5 Second came chronic obstruction of lung, then again diarrhoea, then lower respiratory complications, then stroke. Every new entrant in the top five had a strong air pollution link.** The head of the air laboratory in the Central Pollution Control Board told the Hindustan Times in July 2017 that Delhi hadn’t experienced a single day in the previous 535 days in which air quality could be rated ‘good’.
Jyoti Pande Lavakare, an economist, financial journalist and self-described ‘Delhi high-school Mom’, helps to run a campaign group for concerned parents. At her house in a leafy, middle-class neighbourhood, public parks appear between every other block, watered excessively. Guards sit outside each entrance gate. Such neighbourhoods are not supposed to be infected by something as unpleasant as pollution, yet my Egg tells me it is 280mg/m3. Shards of sunlight illuminate the outdoor air like dust in an attic. Jyoti tells me that some foreign embassies now categorise Delhi as a ‘hardship posting’ – they don’t send diplomats with families to Delhi any more. United Airlines recently cancelled flights into Delhi during the worst of the November smog. ‘It has been building among the international community as an open secret,’ she says. ‘It became something everybody knew but didn’t want to discuss.’ Her phone rings loudly to the ringtone of Coldplay’s ‘Yellow’. ‘I will take it if it is the doctors,’ she says apologetically. ‘It’s OK, it’s not … That is the funny thing, Tim. I am now fighting this fight at a more personal level. My mum has just been diagnosed with lung cancer. She is a long-time Delhi citizen. We have no history of cancer in our family … she is not a smoker. She just breathes the Delhi air.’
Just days after I leave Delhi, an international cricket match held in the capital – a grudge match between India and Sri Lanka – saw smog levels such that umpires halted play for 20 minutes to consult with team doctors. It was the first recorded instance of an international cricket match being halted due to smog. The match resumed but two bowlers left the field complaining of breathing difficulties. ‘We had players coming off the field and vomiting,’ the Sri Lanka coach complained to reporters. ‘There were oxygen cylinders in the changing room.’6
LA’s ‘Photochemical Smog’
The first smog to descend on Los Angeles arrived in 1943. Many feared it was a Japanese chemical attack, causing panic on the streets. But in fact, the menace was home-grown, and its arrival was predictable. Los Angeles, like Mexico City and Beijing, is a natural pollution trap. It sits in a geological bowl (of around 1,630 square miles) surrounded by a high rim of mountains which traps in the air below. Early in the twentieth century, fumes from steel mills, chemical plants and waste incinerators slowly began to fill up the bowl. After the 1943 smog, government agencies turned to Dr Arie Haagen-Smit, a bio-chemist at the California Institute of Technology, to investigate what was happening. His subsequent research discovered the process that causes ozone pollution and coined the phrase ‘photochemical smog’.
Haagen-Smit’s paper ‘The control of air pollution in Los Angeles’, published in the December 1954 edition of Engineering and Science, concluded that: ‘The chemical analysis of smog air shows the presence of a great number of materials, among which are sulfur dioxide and dusts, well known as trouble-makers in other industrial areas … our discovery that photochemical oxidation of organic material is accompanied by ozone formation [gives] further scientific evidence for the necessity of controlling hydrocarbon emissions.’ Haagen-Smit’s obituary in the New York Times, 1977, remembers: ‘he engaged the oil and automotive industries in an almost single-handed battle against pollution from burned fuels … induced industry to filter smokestack fumes, urged automotive plants to develop hardware that would reduce exhaust vapors and reiterated the need for planned control of industrial expansion.’ One thing he couldn’t stop, however, was the city’s love affair with the car. Dr Devra Davis estimates that by 1955, around half the city’s five million residents had a car, burning a total of 58,000 tonnes of fuel a year. Los Angeles was previously known for its electric streetcars, covering 1,500 miles of track, but – as in London – they were ripped up to make way for the automobile. Davis writes that, in 1954, ‘huge bonfires were lit as kerosene-soaked streetcars and electric trains that formerly served Hollywood were burned.’7 If ever an image summed up the mid-twentieth-century mistake to favour fossil fuel over electrification, it is surely this.††
From 1950 to 1970, the population of southern California doubled, while the number of vehicles tripled. Governor Ronald Reagan urged residents in 1974 to limit ‘all but absolutely necessary auto travel’ and to drive slower to reduce emissions, but his words had little effect. Studies in California in the 1980s began examining the health effects of traffic pollution and found an unexpectedly high rate of premature deaths from cardiovascular disease.
Mary Nichols, chair of the California Air Resources Board from 1979 to 1983, recalls, ‘just reducing the amount of [volatile organic compounds, or VOCs] in the air … was very controversial, and it was litigated. It meant hours in hearings with companies like Southern California Edison which fought a vigorous battle with all kinds of science experts trying to convince us that we shouldn’t be trying to [curb emissions].’ At its worst, the LA smog ‘burned your lungs when you breathed it, and it smells bad – it literally has a smell and a taste to it – which is not what air is supposed to be like,’ says Nichols. ‘It has an industrial, chemical flavour. And it’s also ugly – you can see it, it casts a pall over everything you are looking at. And you can see the effects of it, on buildings, on monuments, where it eats away at marble and stone. And as far as humans are concerned and animals – because pets experience it too – it hurts to breathe and makes people less capable of being outdoors. People would be told not to go outside … they were stuck indoors.’
Sam Atwood was a daily newspaper reporter in the 1980s at the San Bernardino Sun and the Santa Fe New Mexican. In 1990 he won a national journalism award for an eight-part series on the health effects of smog. ‘Around 1987 the opportunity came up to work for a newspaper in Southern California,’ he remembers, ‘so I flew out for an interview – and you can still have this experience today … you know, you are literally flying into a blanket of smog … The San Gabriel mountains are beautiful, they’re less than 10 miles from the airport but you couldn’t see them at all … I almost started having a little bit of a panic attack thinking “What am I doing here … I’m going to be breathing this stuff?!”’ Sam’s plane landed during one of the many frequent Stage 1 smog alerts, signalling a high level of ozone: ‘at that level anyone would feel the effects, it’s difficult to take a deep breath, you feel like there’s a heavy weight on your chest and there’s no denying the fact that air quality is affecting each and every person who is breathing it.’ Los Angeles, he says, ‘has always had a horrific ozone problem and it continues to be our greatest challenge’.
Between 2012 and 2014, LA had 81 ‘red alert’ high ozone days; by contrast, the entire state of Florida had just one. Suzanne Paulson, UCLA (University of California, Los Angeles) professor and director of the Center for Clean Air, explains that the problem today is ‘still internal combustion cars [plus] other sources like off-road vehicles, construction vehicles, planes, trains, and ships: we have an enormous amount of shipping coming into LA, about half of all the stuff that comes from Asia to the United States comes in through the ports of LA and Long Beach.’ In summary, says Paulson, ‘if we suddenly got rid of all the combustion then we would pretty much deal with all of [the air pollution].’
The 2016 State of the Air report by the American Lung Association found that 12 cities in California reported a year-on-year increase in ozone pollution, LA having topped the ‘most polluted’ list for 15 out of the last 16 reports. During 2016, five cities in the Western states had their worst short-term daily pollution episodes since the report began, largely due to an increase in summer droughts and wildfires, ‘although they are not the only sources. High particle days frequently result from use of wood-burning stoves for heat, dust storms, wildfires and weather patterns that trap in emissions from power plants, trucks, buses, trains, ships and industrial sources.’ Across the nation, more than 4 in 10 Americans (44 per cent) live in counties that have unhealthy levels of ozone or particle pollution, a higher percentage than in 2009–11. PM2.5 alone causes twice as many deaths per year than traffic accidents in the US. The American Lung Association also warned of powerful forces seeking ‘to weaken the [US] Clean Air Act‡‡ … and to undermine the ability of the nation to fight for healthy air’. With the incoming Trump administration, they would very soon be proved right.
Paris: NOx-ious gases
When I arrive at the Airparif offices on the south bank of the Seine, Amélie Fritz apologies for looking tired. It is the day after the city’s ‘Journée sans Voiture’, a now annual day when Paris tries to persuade its residents to travel without a car for a day. Fritz, an environmental biologist at Airparif, the city’s official air quality monitoring organisation, was talking to journalists until late into the night. She did the last TV interview at her home – ‘I was too tired to stay at work, so I just said “yeah OK sure, but you have to come to my house now”.’
She shows me upstairs to her office, where a large desk spills over with various reports and journal papers. ‘Paris has quite good luck in terms of geographical conditions,’ she begins. ‘The land is very flat, we are not surrounded by mountains, there is no massive industry, it’s not an industrial site, there’s lots of wind and rain – this is quite good for air quality … But if it is low sky, no wind – it’s like running your car inside your garage, basically.’
From 30 November to 17 December 2016, the Greater Paris area experienced one of its longest and most intense pollution episodes in a decade. A high PM10 concentration due to local emissions from traffic and domestic fires, plus no wind, saw the whole of Paris trapped in its garage with the car running. On Wednesday 30 November the hourly PM2.5 reading in Saint-Denis, central Paris, peaked at 195mg/m3, while NO2 maxed out at an asphyxiating 283mg/m3 at Place de l’Opera the following day. The situation improved during the weekend, but then went back up again the following week. All public transport plus the city’s public bicycle-hire and electric car-hire schemes were offered free of charge to try to stop residents from firing up their car engines. Over 2,000 asthmatic children were treated in Parisian hospital emergency rooms. By 8 December, the front page of the daily newspaper 20 Minutes exclaimed ‘La fumée tue’ (Smoke kills). TV news channel France 24 commented that ‘the local authorities and the government are at loggerheads with each other, blaming each other for these current pollution levels’, while the campaign website ‘Stoppollution’ claimed, ‘Living in Paris during this peak of pollution is equivalent to breathing the smoke of eight cigarettes a day in a room of 20 square metres.’
According to the national public health agency Santé publique France, air pollution kills 48,000 people a year in France, 34,000 of which are classed as ‘avoidable’ deaths: ‘In urban areas with more than 100,000 inhabitants the results show, on average, a loss of 15 months of life expectancy at 30 years due to PM2.5; in [population] areas between 2,000 and 100,000, the loss of life expectancy is 10 months on average; in rural areas, on average, 9 months of life expectancy are estimated to be lost.’ But crucially these findings aren’t related simply to peak episodes such as December 2016. A Santé publique France study of 17 cities in France from 2007 to 2010 confirmed, ‘it is the daily and long-term exposure to pollution that has the greatest impact on health, with pollution peaks having a marginal effect.’
Many of the problems began in the 1970s. Les Halles market was demolished to make way for wider roads along the banks of the Seine and an underground road tunnel was built to make central Paris more accessible to cars. The city was then encircled by a ring road, the Boulevard Périphérique, completed in 1973. Rather than ease congestion, this simply attracted more traffic. In 2010, around 3.6 million Île-de-France residents (people living in the region around Paris) were potentially exposed to traffic-derived NO2 levels exceeding the annual limit value, while roadside levels of NO2 had increased every year since 1997. While the PM2.5 problem in Paris may seem slight compared to Delhi or Beijing, its NOx problem (NO2 + NO) is worse than both cities. The 2010 Airparif annual report explains, ‘the evolution of nitrogen dioxide levels, both at background and at roadside sites, probably relates to primary NO2 emissions from diesel-powered vehicles. Although the filters that now equip most new diesel vehicles contribute to reducing particulate emissions, they also give rise to a significant increase in NO2 emissions. It is now confirmed that the proportion of NO2 in NOx emissions is increasing steadily.’ The warning procedure alerting Parisians of high pollution levels was triggered on 44 separate days in 2012. By 2013, there were 14.6 million trips taken by car in the Île-de-France region every single day, an estimated 65 per cent of which took place in Paris.8 The 2017 Airparif report finds that NO2 levels along major roads are twice that of those away from the road, and often two times higher than the annual EU limit.
Amélie describes the air pollution in Paris now as being a combination of ‘NO2 plus PM10 and PM2.5. There are still some remaining issues with benzene. And ozone outside of the city, on the regional level … There is also quite a lot of agriculture and wood smoke as well.’ She tells me that air pollution is now ‘one of the major [public] preoccupations – it’s actually coming second only to work and jobs. So, it’s a massive concern basically, people are very worried for their health.’ Polling conducted by Airparif confirms that half of all Paris residents are concerned by the NO2 levels exceeding health-based thresholds.
In 2017, Parisian Clotilde Nonnez, a 56-year-old yoga teacher, took the unprecedented step of taking the French state to court for failing to protect her from the effects of air pollution. Having lived in Paris for 30 years, she had seen her health deteriorate despite a very healthy diet and exercise. When it became worse than ever during the December 2016 smog, she suspected a link. Her doctors confirmed it. ‘The doctor treating me says Paris air is so polluted that we’re breathing rotten air,’ she told France Info. ‘She has other patients like me, including children and babies too. My cardiologist says the same.’ Nonnez’s lawyer François Lafforgue told Le Monde newspaper that something needed to be done to stop 48,000 French deaths per year: ‘We are taking the state to task because we think the medical problems that pollution victims suffer are as a result of the authorities’ lack of action in tackling air pollution.’
On 15 February 2017, the European Commission sent a final warning to France for failing to address persistent breaches of NO2 limit values in 19 air quality zones, including Paris. It stated, ‘EU legislation on ambient air quality and cleaner air for Europe (Directive 2008/50/EC) sets air quality limits that cannot be exceeded anywhere in the EU, and obliges Member States to limit the exposure of citizens to harmful air pollutants. Despite this obligation, air quality has remained a problem [in Paris] … Of the total emitted NOx from traffic, around 80 per cent comes from diesel powered vehicles.’
The Global Air Con
The five cities mentioned above offer just a snapshot of what, by the 2010s, had become a global problem. Air pollution has overtaken poor sanitation and dirty water to become the number one environmental cause of premature death in the world. The latest estimate from the WHO is that approximately 4.2 million people die from outdoor air pollution annually, far greater than the number from HIV/AIDS, tuberculosis and car crashes combined. According to WHO figures in 2018, nine out of ten people around the globe now breathe air containing high levels of pollutants. Unicef believes that two billion children live in areas where pollution levels exceed the WHO air quality standards, while nearly 600,000 children under the age of five die annually from diseases caused or exacerbated by air pollution.
This clearly isn’t a problem that is limited to Europe, India, China or the US. According to the WHO ambient air pollution database, the most polluted city in the world in 2016 was Zabol in Iran. Representing Africa in the ‘top 50 most polluted’ are Bamenda in Cameroon, Kampala in Uganda and Kaduna in Nigeria (although the WHO is keen to point out that ‘Africa and some of the Western Pacific have a serious lack of air pollution data’). The high altitude of South American cities such as Bogotá, Colombia, means they are choked with diesel pollution trapped within mountain basins. In fact, almost all cities – 97 per cent – in low and middle-income countries do not meet WHO air quality guidelines.
The whole world has a smoke problem. If it’s combustible – and especially if it’s a fossil fuel – we’ll happily burn it, with scant regard for what’s in that smoke or where it ends up. So, what is in that smoke? And where does it end up?
Notes
* In July 2018 Stephen Holgate, professor of immunopharmacology at the University of Southampton, submitted evidence in support of an inquest, stating a ‘real prospect that without illegal levels of air pollution Ella would not have died’ and a ‘firm view’ that her death certificate should include air pollution as a causative factor.
† We’ll learn more about both these pollutants in Chapters 2 and 3, while Chapter 5 looks specifically at diesel.
‡ WHO health-based recommendations call for countries to reduce their air pollution levels to annual mean values of 10mg/m3 for PM2.5 and 20mg/m3 for PM10.
§ The US Department of State has since rolled the scheme out to over 20 US embassies worldwide, including the embassy in Delhi. On my travels, I typically found that the US embassy reading was the one most locals turned to as the most trusted source. You can find the live readings at www.airnow.gov.
‖ Given an average of 10 minutes per cigarette, it would take 10.5 hours to smoke 64, one immediately after the other.
¶ The AQI – Air Quality Index – is used by some government agencies and air quality apps to bundle all pollutants together and communicate an overall health warning. But as a rough rule of thumb, when an AQI gets above 200, the PM2.5mg/m3 will be a similar number.
** As we’ll see in Chapter 6, stroke and heart disease combined cause more air-pollution-related deaths than lung conditions.
†† In 1900, there were 600 electric taxis driving around New York, accounting for around a third of all vehicles on the road. Even Porsche produced the all-electric model ‘P1’ in 1898. So, what happened? In 1908 the first affordable mass-produced car, the Ford Model T, chose the rival gasoline-powered engine. Then crude oil was discovered in Texas, suddenly flooding the market. Pretty soon, world power rested on the control and distribution of oil, and greater consumption was encouraged and subsidised. Electric transport faded as a minor domestic concern by comparison.
‡‡ The Clean Air Act of 1970, amended in 1990, gives the US Environmental Protection Agency (EPA) the mandate to regulate air pollution emissions and set National Ambient Air Quality Standards (NAAQS) – or limits – for six major ‘criteria air pollutants’ considered harmful to public health: nitrogen dioxide, particulate matter, sulphur dioxide, carbon monoxide, lead and ozone – with states required to produce State Implementation Plans showing how they intend to meet the targets.