APPENDX E

INTERGRALS, SUMS, INFINITE SERIES AND PRODUCTS, AND CONTINUED FRACTIONS

Integral Tables

      E-l. Elementary Indefinite Integrals

      E-2. Indefinite Integrals

img

E-3. Definite Integrals

Integrals containing

Start with formula number

Algebraic functions

1

Trigonometric functions

9

Exponential and hyperbolic functions

38

Logarithmic functions

61

Sums and Infinite Series

      E-4. Some Finite Sums

      E-5. Miscellaneous Infinite Series

      E-6. Power Series: Binomial Series

      E-7. Power Series for Elementary Transcendental Functions

Infinite Products and Continued Fractions

      E-8. Some infinite Products

      E-9. Some Continued Fractions

E-1. Elementary Indefinite Integrals. Add constant of integration in each case.

img

img

E-2. Indefinite Integrals.* Add constants of integration as needed. Note: As customary in integral tables, interpret loge f(x) as loge |f(x)| whenever it occurs on the right-hand side of an integral formula and f(x) is negative, m, n are integers.

(a) Integrals containing ax + b (a≠0)

img

* Adapted, in part, from I. Bronstein and K. Semendjajev, Pocketbook of Mathematics, 6th ed., published by the Soviet Government, Moscow, 1956.

img

img

(b) Integrals containing ax + b and cx + d (a≠0, c≠0)

img

img

(c) Integrals containing a + x and b + x (a≠b)

img

(d) Integrals containing ax2 + bx + c (a≠0)

img

img

(e) Integrals containing ax2 ± x2

img

Where ± or image appears in a formula, the upper sign refers to Xa2 + x2 and the lower sign to Xa2x2 (a ≠ 0).

img

img

(f) Integrals containing a3 ± x2, with

img

img

(g) Integrals containing a4 ± x4 (a ≠ 0)

img

img

(h) Integrals containing img and ax2 + b2x (a, b ≠0)

img

(i) Integrals containing img and ax2 − b2x > 0 (a, b ≠ 0)

img

img

(j) Other integrals containing img

img

(k) Integrals containing img

img

img

img

(l) Integrals containing img with

img

img

img

(m) Integrals containing img with

img

img

img

img

(n) Integrals containing img with

img

img

img

(o) Integrals containing img with

img

img

img

(p) Other irrational forms (a > 0, b ± 0)

img

(q) Recursion formulas (m, n, p are integers)

img

img

(r) Integrals containing the sine function (a ≠ 0)

img

img

img

img

(s) Integrals containing the cosine function (a ≠ 0)

img

img

img

img

(t) Integrals containing both sine and cosine (a ≠ 0)

img

img

img

img

img

img

(u) Integrals containing tangent and cotangent functions (a ≠ 0)

img

img

(v) Integrals containing hyperbolic functions (a ≠ 0)

img

img

img

(w) Integrals containing exponential functions

img

img

img

(x) Integrals containing logarithmic functions

img

img

(y) Integrals containing inverse trignometric and hyperbolic functions

img

img

img

img

E.3 Definite Integrals (see also Secs. 21.4-1 and 21.6-6 and Appendix D). m,n are integers

(a) Integrals containing algebraic functions

img

img

(b) Integrals containing trigonometric functions (see also Secs. E-Sc and d)

img

img

img

(c) Integrals containing exponential and hyperbolic functions (a > 0)

img

img

(d) Integrals containing logarithmic functions (see also Secs. E-Sc and d)

img

img

img

SUMS AND INFINITE SERIES

E-4. Some Finite Sums

img

img

E-5. Miscellaneous Infinite Series

img

img

NOTE: The series img is referred to as Riemann's zeta function of the variable z.

img

E-6. Power Series: Binomial Series

img

img

NOTE: The series for (1± x)m reduces to finite sums (Binomial Theorem, Sec. 1.4-1) if m = 1, 2, 3, . . . .

E-7. Power Series for Elementary Transcendental Functions

img

img

where the Bk are the Bernoulli numbers defined in Sec. 21.5-2. 13 and 14 yield similar series for tanh z and coth z with the aid of Eq. (21.2-32).

img

INFINITE PRODUCTS AND CONTINUED FRACTIONS

E-8. Some Infinite Products (see also Sec. 7-6)

img

E-9. Some Continued Franctions (see also Secs. 4.8-8 and 21.5-7)

img

Table E-1. Operations with Series*

img

BIBLIOGRAPHY

Abramowitz, M., and I. A. Stegun: Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C., 1964.

Bierens de Haan, D.: Nouvelles tables d' intégrates definies, Stechert, New York, 1939.

Byrd, P. F., and M. D. Friedman: Handbook of Elliptic Integrals for Engineers and Physicists, Springer, Berlin, 1954.

Gröbner and Hofreiter: Integral Tafel, 2d ed., Springer, Vienna, 1958.

Lindman, C. F.: Examen des novelles tables d' integrates definies de M. Bierens de Haan, 1944.

Luke, Y. I.: Integrals of BesselFunctions, McGraw-Hill, New York, 1962.

Petit Bois, G.: Tables of Indefinite Integrals, Dover, New York, 1961.

Ryshik, I. M., and I. S. Gradstein: Tables of Series, Products, and Integrals, Academic Press, New York, 1964.