Notes
Chapter 1: Introduction

1    P. W. Atkins, “Magnetic field effects,” Chemistry in Britain, vol. 12 (1976), p. 214.

2    S. Emlen, W. Wiltschko, N. Demong and R. Wiltschko, “Magnetic direction finding: evidence for its use in migratory indigo buntings,” Science, vol. 193 (1976), pp. 505–8.

Chapter 2: What is life?

1    S. Harris, “Chemical potential: turning carbon dioxide into fuel,” The Engineer, August 9, 2012, http://www.theengineer.co.uk/energy-and-environment/in-depth/chemical-potential-turning-carbon-dioxide-into-fuel/1013459.article#ixzz2upriFA00.

2    Die Naturwissenschaften, vol. 20 (1932), pp. 815–21.

3    Pascual Jordan, 1938, quoted in P. Galison, M. Gordin and D. Kaiser, eds., Quantum Mechanics: Science and Society (London: Routledge, 2002), p. 346.

4    H. C. Longuet-Higgins, “Quantum mechanics and biology,” Biophysical Journal, vol. 2 (1962), pp. 207–15.

5    M. P. Murphy and L. A. J. O’ Neil, eds., What Is Life? The Next Fifty Years: Speculations on the Future of Biology (Cambridge: Cambridge University Press, 1995).

Chapter 3: The engines of life

1    R. P. Feynman, R. B. Leighton and M. L. Sands, The Feynman Lectures on Physics (Reading, MA: Addison-Wesley, 1964), vol. 1, pp. 3–6.

2    M. H. Schweitzer, Z. Suo, R. Avci, J. M. Asara, M. A. Allen, F. T. Arce and J. R. Horner, “Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein,” Science, vol. 316: 5822 (2007), pp. 277–80.

3    J. Gross, “How tadpoles lose their tails: path to discovery of the first matrix metalloproteinase,” Matrix Biology, vol. 23: 1 (2004), pp. 3–13.

4    G. E. Lienhard, “Enzymatic catalysis and transition-state theory,” Science, vol. 180: 4082 (1973), pp. 149–54.

5    C. Tallant, A. Marrero and F. X. Gomis-Ruth, “Matrix metalloproteinases: fold and function of their catalytic domains,” Biochimica et Biophysica Acta (Molecular Cell Research), vol. 1803: 1 (2010), pp. 20–8.

6    A. J. Kirby, “The potential of catalytic antibodies,” Acta Chemica Scandinavica, vol. 50: 3 (1996), pp. 203–10.

7    Don DeVault and Britton Chance, “Studies of photosynthesis using a pulsed laser: I. Temperature dependence of cytochrome oxidation rate in chromatium. Evidence for tunneling,” BioPhysics, vol. 6 (1966), p. 825.

8    J. J. Hopfield, “Electron transfer between biological molecules by thermally activated tunneling,” Proceedings of the National Academy of Sciences, vol. 71 (1974), pp. 3640–4.

9    Yuan Cha, Christopher J. Murray and Judith Klinman, “Hydrogen tunneling in enzyme reactions,” Science, vol. 243: 3896 (1989), pp. 1325–30.

10   L. Masgrau, J. Basran, P. Hothi, M. J. Sutcliffe and N. S. Scrutton, “Hydrogen tunneling in quinoproteins,” Archives of Biochemistry and Biophysics, vol. 428: 1 (2004), pp. 41–51; L. Masgrau, A. Roujeinikova, L. O. Johannissen, P. Hothi, J. Basran, K. E. Ranaghan, A. J. Mulholland, M. J. Sutcliffe, N. S. Scrutton and D. Leys, “Atomic description of an enzyme reaction dominated by proton tunneling,” Science, vol. 312: 5771 (2006), pp. 237–41.

11   David R. Glowacki, Jeremy N. Harvey and Adrian J. Mulholland, “Taking Ockham’s razor to enzyme dynamics and catalysis,” Nature Chemistry, vol. 4 (2012), pp. 169–76.

Chapter 4: The quantum beat

1    From the BBC TV series Fun to Imagine 2: Fire (1983), available on YouTube: http://www.youtube.com/watch?v=ITpDrdtGAmo.

2    Interview with CBC News, available at: http://www.cbc.ca/news/tech nology/quantum-weirdness-used-by-plants-animals-1.912061.

3    G. S. Engel, T. R. Calhoun, E. L. Read, T-K. Ahn, T. Mančal, Y-C. Cheng, R. E. Blankenship and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature, vol. 446 (2007), pp. 782–6.

4    I. P. Mercer, Y. C. El-Taha, N. Kajumba, J. P. Marangos, J. W. G. Tisch, M. Gabrielsen, R. J. Cogdell, E. Springate and E. Turcu, “Instantaneous mapping of coherently coupled electronic transitions and energy transfers in a photosynthetic complex using angle-resolved coherent optical wave-mixing,” Physical Review Letters, vol. 102: 5 (2009), pp. 057402.

5    E. Collini, C. Y. Wong, K. E. Wilk, P. M. Curmi, P. Brumer and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature, vol. 463: 7281 (2010), pp. 644–7.

6    G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proceedings of the National Academy of Sciences, vol. 107: 29 (2010), pp. 12766–70.

7    T. R. Calhoun, N. S. Ginsberg, G. S. Schlau-Cohen, Y. C. Cheng, M. Ballottari, R. Bassi and G. R. Fleming, “Quantum coherence enabled determination of the energy landscape in light-harvesting complex II,” Journal of Physical Chemistry B, vol. 113: 51 (2009), pp. 16291–5.

Chapter 5: Finding Nemo’s home

1    Exodus 30: 34–5.

2    Quoted in A. Le Guerer, Scent: The Mysterious and Essential Power of Smell (New York: Kodadsha America Inc., 1994), p. 12.

3    R. Eisner, “Richard Axel: one of the nobility in science,” P&S Columbia University College of Physicians and Surgeons, vol. 25: 1 (2005).

4    C. S. Sell, “On the unpredictability of odor,” Angewandte Chemie, International Edition (English), 45: 38 (2006), pp. 6254–61.

5    K. Mori and G. M. Shepherd, “Emerging principles of molecular signal processing by mitral/tufted cells in the olfactory bulb,” Seminars in Cell Biology, vol. 5: 1 (1994), pp. 65–74.

6    L. Turin, The Secret of Scent: Adventures in Perfume and the Science of Smell (London: Faber & Faber, 2006), p. 4.

7    L. Turin, “A spectroscopic mechanism for primary olfactory reception,” Chemical Senses, vol. 21: 6 (1996), pp. 773–91.

8    Turin, The Secret of Scent, p. 176.

9    C. Burr, The Emperor of Scent: A True Story of Perfume and Obsession (New York: Random House, 2003).

10   A. Keller and L. B. Vosshall, “A psychophysical test of the vibration theory of olfaction,” Nature Neuroscience, vol. 7: 4 (2004), pp. 337–8.

11   M. I. Franco, L. Turin, A. Mershin and E. M. Skoulakis, “Molecular vibration-sensing component in Drosophila melanogaster olfaction,” Proceedings of the National Academy of Sciences, vol. 108: 9 (2011), pp. 3797–802.

12   J. C. Brookes, F. Hartoutsiou, A. P. Horsfield and A. M. Stoneham, “Could humans recognize odor by phonon assisted tunneling?,” Physical Review Letters, vol. 98: 3 (2007), p. 038101.

Chapter 6: The butterfly, the fruit fly and the quantum robin

1    F. A. Urquhart, “Found at last: the monarch’s winter home,” National Geographic, Aug. 1976.

2    R. Stanewsky, M. Kaneko, P. Emery, B. Beretta, K. Wager-Smith, S. A. Kay, M. Rosbash and J. C. Hall, “The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila,” Cell, vol. 95: 5 (1998), pp. 681–92.

3    H. Zhu, I. Sauman, Q. Yuan, A. Casselman, M. Emery-Le, P. Emery and S. M. Reppert, “Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation,” PLOS Biology, vol. 6: 1 (2008), e4.

4    S. M. Reppert, R. J. Gegear and C. Merlin, “Navigational mechanisms of migrating monarch butterflies,” Trends in Neurosciences, vol. 33: 9 (2010), pp. 399–406.

5    P. A. Guerra, R. J. Gegear and S. M. Reppert, “A magnetic compass aids monarch butterfly migration,” Nature Communications, vol. 5: 4164 (2014), pp. 1–8.

6    A. T. von Middendorf, Die Isepiptesen Russlands Grundlagen zur Erforschung der Zugzeiten und Zugrichtungen der Vögel Russlands (St. Petersburg, 1853).

7    H. L. Yeagley and F. C. Whitmore, “A preliminary study of a physical basis of bird navigation,” Journal of Applied Physics, vol. 18: 1035 (1947).

8    M. M. Walker, C. E. Diebel, C. V. Haugh, P. M. Pankhurst, J. C. Montgomery and C. R. Green, “Structure and function of the vertebrate magnetic sense,” Nature, vol. 390: 6658 (1997), pp. 371–6.

9    M. Hanzlik, C. Heunemann, E. Holtkamp-Rotzler, M. Winklhofer, N. Petersen and G. Fleissner, “Superparamagnetic magnetite in the upper beak tissue of homing pigeons,” Biometals, vol. 13: 4 (2000), pp. 325–31.

10   C. V. Mora, M. Davison, J. M. Wild and M. M. Walker, “Magnetoreception and its trigeminal mediation in the homing pigeon,” Nature, vol. 432 (2004), pp. 508–11.

11   C. Treiber, M. Salzer, J. Riegler, N. Edelman, C. Sugar, M. Breuss, P. Pichler, H. Cadiou, M. Saunders, M. Lythgoe, J. Shaw and D. A. Keays, “Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons,” Nature, vol. 484 (2012), pp. 367–70.

12   S. T. Emlen, W. Wiltschko, N. J. Demong, R. Wiltschko and S. Bergman, “Magnetic direction finding: evidence for its use in migratory indigo buntings,” Science, vol. 193: 4252 (1976), pp. 505–8.

13   L. Pollack, “That nest of wires we call the imagination: a history of some key scientists behind the bird compass sense,” May 2012, p. 5: http://www.ks.uiuc.edu/History/magnetoreception.

14   Ibid., p. 6.

15   K. Schulten, H. Staerk, A. Weller, H-J. Werner and B. Nickel, “Magnetic field dependence of the geminate recombination of radical ion pairs in polar solvents,” Zeitschrift für Physikale Chemie, n.s., vol. 101 (1976), pp. 371–90.

16   Pollack, “That nest of wires we call the imagination,” p. 11.

17   K. Schulten, C. E. Swenberg and A. Weller, “A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion,” Zeitschrift für Physikale Chemie, n.s., vol. 111 (1978), pp. 1–5.

18   From P. Hore, “The quantum robin,” Navigation News, Oct. 2011.

19   N. Lambert, “Quantum biology,” Nature Physics, vol. 9: 10 (2013), and references therein.

20   M. J. M. Leask, “A physicochemical mechanism for magnetic field detection by migratory birds and homing pigeons,” Nature, vol. 267 (1977), pp. 144–5.

21   T. Ritz, S. Adem and K. Schulten, “A model for photoreceptor-based magnetoreception in birds,” Biophysical Journal, vol. 78: 2 (2000), pp. 707–18.

22   M. Liedvogel, K. Maeda, K. Henbest, E. Schleicher, T. Simon, C. R. Timmel, P. J. Hore and H. Mouritsen, “Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs,” PLOS One, vol. 2: 10 (2007), e1106.

23   C. Nießner, S. Denzau, K. Stapput, M. Ahmad, L. Peichl, W. Wiltschko and R. Wiltschko, “Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds,” Journal of the Royal Society Interface, vol. 10: 88 (Nov. 6, 2013), 20130638.

24   T. Ritz, P. Thalau, J. B. Phillips, R. Wiltschko and W. Wiltschko, “Resonance effects indicate a radical-pair mechanism for avian magnetic compass,” Nature, vol. 429 (2004), pp. 177–80.

25   S. Engels, N-L. Schneider, N. Lefeldt, C. M. Hein, M. Zapka, A. Michalik, D. Elbers, A. Kittel, P. J. Hore and H. Mouritsen, “Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird,” Nature, vol. 509 (2014), pp. 353–6.

26   E. M. Gauger, E. Rieper, J. J. Morton, S. C. Benjamin and V. Vedral, “Sustained quantum coherence and entanglement in the avian compass,” Physical Review Letters, vol. 106: 4 (2011), 040503.

27   M. Ahmad, P. Galland, T. Ritz, R. Wiltschko and W. Wiltschko, “Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana,” Planta, vol. 225: 3 (2007), pp. 615–24.

28   M. Vacha, T. Puzova and M. Kvicalova, “Radio frequency magnetic fields disrupt magnetoreception in American cockroach,” Journal of Experimental Biology, vol. 212: 21 (2009), pp. 3473–7.

Chapter 7: Quantum genes

1    Y. M. Shtarkman, Z. A. Kocer, R. Edgar, R. S. Veerapaneni, T. D’Elia, P. F. Morris and S. O. Rogers, “Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya,” PLOS One, vol. 8: 7 (2013), e67221.

2    J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid,” Nature, vol. 171 (1953), pp. 737–8.

3    C. Darwin, On the Origin of Species, ch. 4.

4    J. D. Watson and F. H. C. Crick, “Genetic implications of the structure of deoxyribonucleic acid,” Nature, vol. 171 (1953), pp. 964–9.

5    W. Wang, H. W. Hellinga and L. S. Beese, “Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis,” Proceedings of the National Academy of Sciences, vol. 108: 43 (2011), pp. 17644–8.

6    A. Datta and S. Jinks-Robertson, “Association of increased spontaneous mutation rates with high levels of transcription in yeast,” Science, vol. 268: 5217 (1995), pp. 1616–19.

7    J. Bachl, C. Carlson, V. Gray-Schopfer, M. Dessing and C. Olsson, “Increased transcription levels induce higher mutation rates in a hypermutating cell line,” Journal of Immunology, vol. 166: 8 (2001), pp. 5051–7.

8    P. Cui, F. Ding, Q. Lin, L. Zhang, A. Li, Z. Zhang, S. Hu and J. Yu, “Distinct contributions of replication and transcription to mutation rate variation of human genomes,” Genomics, Proteomics and Bioinformatics, vol. 10: 1 (2012), pp. 4–10.

9    J. Cairns, J. Overbaugh and S. Millar, “The origin of mutants,” Nature, vol. 335 (1988), pp. 142–5.

10   John Cairns on Jim Watson, Cold Spring Harbor Oral History Collection. Interview available at: http://library.cshl.edu/oralhistory/interview/james-d-watson/meeting-jim-watson/watson/.

11   J. Gribbin, In Search of Schrödinger’s Cat (London: Wildwood House, 1984; repr. Black Swan, 2012).

12   J. McFadden and J. Al-Khalili, “A quantum mechanical model of adaptive mutation,” Biosystems, vol. 50: 3 (1999), pp. 203–11.

13   J. McFadden, Quantum Evolution (London: HarperCollins, 2000).

14   A critical review is published here: http://arxiv.org/abs/quant-ph/0101019 and our response can be found here: http://arxiv.org/abs/quant-ph/0110083.

15   H. Hendrickson, E. S. Slechta, U. Bergthorsson, D. I. Andersson and J. R. Roth, “Amplification-mutagenesis: evidence that “directed” adaptive mutation and general hypermutability result from growth with a selected gene amplification,” Proceedings of the National Academy of Sciences, vol. 99: 4 (2002), pp. 2164–9.

16   e.g. J. D. Stumpf, A. R. Poteete and P. L. Foster, “Amplification of lac cannot account for adaptive mutation to Lac+ in Escherichia coli,” Journal of Bacteriology, vol. 189: 6 (2007), pp. 2291–9.

17   e.g. E. S. Kryachko, “The origin of spontaneous point mutations in DNA via Löwdin mechanism of proton tunneling in DNA base pairs: cure with covalent base pairing,” International Journal of Quantum Chemistry, vol. 90: 2 (2002), pp. 910–23; Zhen Min Zhao, Qi Ren Zhang, Chun Yuan Gao and Yi Zhong Zhuo, “Motion of the hydrogen bond proton in cytosine and the transition between its normal and imino states,” Physics Letters A, vol. 359: 1 (2006), pp. 10–13.

18   A. D. Godbeer, J. S. Al-Khalili, and P. D. Stevenson, “Modelling Proton Tunnelling in the Adenine-Thymine Base Pair,” accepted for publication in Physical Chemistry, Chemical Physics (2015).

Chapter 8: Mind

1    Interview for the Los Angeles Times, Feb. 14, 1995.

2    J-M. Chauvet, E. Brunel-Deschamps, C. Hillaire and J. Clottes, Dawn of Art. The Chauvet Cave: The Oldest Known Paintings in the World (New York: Harry N. Abrams, 1996).

3    Quoted in J. Hadamard, Essay on the Psychology of Invention in the Mathematical Field (Princeton: Princeton University Press, 1945). However, according to Daniel Dennett in “Memes and the exploitation of imagination,” Journal of Aesthetics and Art Criticism, vol. 48 (1990), pp. 127–35 (available at http://ase.tufts.edu/cogstud/dennett/papers/memeimag.htm#5), this oft-quoted passage is probably not from Mozart and is of uncertain origin. We have nevertheless decided to retain it because its author, whoever that is, managed to describe a familiar but remarkable phenomenon very nicely.

4    J. McFadden, “The CEMI field theory gestalt information and the meaning of meaning,” Journal of Consciousness Studies, vol. 20: 3–4 (2013), pp. 152–82.

5    Chauvet et al., Dawn of Art.

6    M. Kinsbourne, “Integrated cortical field model of consciousness,” in Experimental and Theoretical Studies of Consciousness, CIBA Foundation Symposium No. 174 (Chichester: Wiley, 2008).

7    K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton and M. L. W. Thewalt, “Room-temperature quantum bit storage exceeding 29 minutes using ionized donors in silicon-28,” Science, vol. 342: 6160 (2013), pp. 830–33.

8    D. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid (New York: Basic Books, 1999; first publ. 1979).

9    R. Penrose, Shadows of the Mind: A Search for the Missing Science of Consciousness (Oxford: Oxford University Press, 1994).

10   S. Hameroff, “Quantum computation in brain microtubules? The Penrose–Hameroff ‘Orch OR’ model of consciousness,” Philosophical Transactions of the Royal Society Series A, vol. 356: 1743 (1998), pp. 1869–95; S. Hameroff and R. Penrose, “Consciousness in the universe: a review of the ‘Orch OR’ theory,” Physics of Life Reviews, vol. 11 (2014), pp. 39–78.

11   M. Tegmark, “Importance of quantum decoherence in brain processes,” Physical Review E, vol. 61 (2000), pp. 4194–206.

12   See e.g. A. Litt, C. Eliasmith, F. W. Kroon, S. Weinstein and P. Thagard, “Is the brain a quantum computer?,” Cognitive Science, vol. 30: 3 (2006), pp. 593–603.

13   G. Bernroider and J. Summhammer, “Can quantum entanglement between ion transition states effect action potential initiation?,” Cognitive Computation, vol. 4 (2012), pp. 29–37.

14   McFadden, Quantum Evolution; J. McFadden, “Synchronous firing and its influence on the brain’s electromagnetic field: evidence for an electromagnetic theory of consciousness,” Journal of Consciousness Studies, vol. 9 (2002), pp. 23–50; S. Pockett, The Nature of Consciousness: A Hypothesis (Lincoln, NE: Writers Club Press, 2000); E. R. John, “A field theory of consciousness,” Consciousness and Cognition, vol. 10: 2 (2001), pp. 184–213; J. McFadden, “The CEMI field theory closing the loop,” Journal of Consciousness Studies, vol. 20: 1–2 (2013), pp. 153–68.

15   McFadden, “The CEMI field theory gestalt information and the meaning of meaning.”

16   C. A. Anastassiou, R. Perin, H. Markram and C. Koch, “Ephaptic coupling of cortical neurons,” Nature Neuroscience, vol. 14: 2 (2011), pp. 217–23; F. Frohlich and D. A. McCormick, “Endogenous electric fields may guide neocortical network activity,” Neuron, vol. 67: 1 (2010), pp. 129–43.

17   McFadden, “The CEMI field theory closing the loop.”

18   W. Singer, “Consciousness and the structure of neuronal representations,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 353: 1377 (1998), pp. 1829–40.

Chapter 9: How life began

1    S. L. Miller, “A production of amino acids under possible primitive earth conditions,” Science, vol. 117: 3046 (1953), pp. 528–9.

2    G. Cairns-Smith, Seven Clues to the Origin of Life: A Scientific Detective Story (Cambridge: Cambridge University Press, 1985; new edn. 1990).

3    McFadden, Quantum Evolution; J. McFadden and J. Al-Khalili, “Quantum coherence and the search for the first replicator,” in D. Abbott, P. C. Davies and A. K. Patki, eds., Quantum Aspects of Life (London: Imperial College Press, 2008).

4    A. Patel, “Quantum algorithms and the genetic code,” Pramana Journal of Physics, vol. 56 (2001), pp. 367–81; available at http://arxiv.org/pdf/quant-ph/0002037.pdf.

Chapter 10: Quantum biology: life on the edge of a storm

1    M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New Journal of Physics, vol. 10 (2008), 113019; F. Caruso, A. W. Chin, A. Datta, S. F. Huelga and M. B. Plenio, “Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport,” Journal of Chemical Physics, vol. 131 (2009), 105106–21.

2    M. Mohseni, P. Rebentrost, S. Lloyd and A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer,” Journal of Chemical Physics, vol. 129: 17 (2008), 174106.

3    B. Misra and G. Sudarshan, “The Zeno paradox in quantum theory,” Journal of Mathematical Physics, vol. 18 (1977), p. 746: http://dx.doi.org/10.1063/1.523304.

4    S. Lloyd, M. Mohseni, A. Shabani and H. Rabitz, “The quantum Goldilocks effect: on the convergence of timescales in quantum transport,” arXiv preprint, arXiv:1111.4982, 2011.

5    A. W. Chin, S. F. Huelga and M. B. Plenio, “Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences,” Philosophical Transactions of the Royal Society A, vol. 370 (2012), pp. 3658–71; A. W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S. F. Huelga and M. B. Plenio, “The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes,” Nature Physics, vol. 9: 2 (2013), pp. 113–18.

6    E. J. O’Reilly and A. Olaya-Castro, “Non-classicality of molecular vibrations activating electronic dynamics at room temperature,” Nature Communications, vol. 5 (2014), article no. 3012.

7    I. Stewart, Does God Play Dice?: The New Mathematics of Chaos (Harmondsworth: Penguin UK, 1997); S. Kauffman. The Origins of Order: Self-Organization and Selection in Evolution (New York: Oxford University Press, 1993); J. Gleick, Chaos: Making a New Science (New York: Random House, 1997).

8    M. O. Scully, K. R. Chapin, K. E. Dorfman, M. B. Kim and A. Svidzinsky, “Quantum heat engine power can be increased by noise-induced coherence,” Proceedings of the National Academy of Sciences, vol. 108: 37 (2011), pp. 15097–100.

9    K. E. Dorfman, D. V. Voronine, S. Mukamel and M. O. Scully, “Photosynthetic reaction center as a quantum heat engine,” Proceedings of the National Academy of Sciences, vol. 110: 8 (2013), pp. 2746–51.

10   N. Killoran, S. F. Huelga, M. B. Plenio, “Enhancing light-harvesting power with coherent vibrational interactions: a quantum heat engine picture,” arXiv preprint, arxiv.org/abs/1412.4136, 2014.

11   M. Ferretti, V. I. Novoderezhkin, E. Romero, R. Augulis, A. Pandit, D. Zigmantas and R. Van Grondelle, “The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy,” Physical Chemistry Chemical Physics, vol. 16 (2014), pp. 9930–9.

12   C. R. Pudney, A. Guerriero, N. J. Baxter, L. O. Johannissen, J. P. Waltho, S. Hay and N. S. Scrutton, “Fast protein motions are coupled to enzyme H-transfer reactions,” Journal of the American Chemical Society, vol. 135 (2013), pp. 2512–17.

13   J. P. Klinman and A. Kohen, “Hydrogen tunneling links protein dynamics to enzyme catalysis,” Annual Review of Biochemistry, vol. 82 (2013), pp. 471–96.

14   R. Armstrong and N. Spiller, “Living quarters,” Nature, vol. 467 (2010), pp. 916–19.

15   S. Leduc, The Mechanism of Life (London: William Heinemann, 1914).

16   T. Toyota, N. Maru, M. M. Hanczyc, T. Ikegami and T. Sugawara, “Self-propelled oil droplets consuming ‘fuel’ surfactant,” Journal of the American Chemical Society, vol. 131: 14 (2009), pp. 5012–13.

17   I. A. Chen, K. Salehi-Ashtiani and J. W. Szostak, “RNA catalysis in model protocell vesicles,” Journal of the American Chemical Society, vol. 127: 38 (2005), pp. 13213–19.

18   R. J. Peters, M. Marguet, S. Marais, M. W. Fraaije, J. C. van Hest and S. Lecommandoux, “Cascade reactions in multicompartmentalized polymersomes.” Angewandte Chemie International Edition (English), vol. 53: 1 (2014), pp. 146–50.

19   D. Hayes, G. B. Griffin and G. S. Engel, “Engineering coherence among excited states in synthetic heterodimer systems,” Science, vol. 340: 6139 (2013), pp. 1431–4.

20   Dorfman et al., “Photosynthetic reaction center as a quantum heat engine.”

21   C. Creatore, M. A. Parker, S. Emmott and A. W. Chin, “An efficient biologically-inspired photocell enhanced by quantum coherence,” arXiv preprint, arXiv:1307.5093, 2013.

22   C. Tan, S. Saurabh, M. P. Bruchez, R. Schwartz and P. Leduc, “Molecular crowding shapes gene expression in synthetic cellular nanosystems,” Nature Nanotechnology, vol. 8: 8 (2013), pp. 602–8; M. S. Cheung, D. Klimov and D. Thirumalai, “Molecular crowding enhances native state stability and refolding rates of globular proteins,” Proceedings of the National Academy of Sciences, vol. 102: 13 (2005), pp. 4753–8.