10

Simplifying Polynomial Expressions

In this chapter, you apply your skills in multiplying polynomials to the process of simplifying polynomial expressions.

Identifying Polynomial Expressions

A polynomial expression is composed of poly­nomials only and can contain grouping symbols, multiplication, addition, subtraction, and raising to nonzero powers only.

Problem   Specify whether the expression is a polynomial expression.

a. 5 + 2(a − 5)

b. Images

c. (2x − 1)(3x − 4) + (x − 1)2

d. 4(x −3y2) + 5(x + y −1)

e. Images

f. 2x2x − 4[3x + 5(x − 4)]

Solution

a. 5 + 2(a − 5)

Images

Step 1.   Check whether the expression meets the criteria for a polynomial expression.

5 + 2(a − 5) is composed of polynomials and contains permissible components, so it is a polynomial expression.

b. Images

Images

Step 1.   Check whether the expression meets the criteria for a polynomial expression.

Images is not a polynomial expression because it contains division by x2.

c. (2x − 1)(3x − 4) + (x − 1)2

Images

Step 1.   Check whether the expression meets the criteria for a polynomial expression.

(2x − 1)(3x − 4) + (x − 1)2 is composed of polynomials and contains permissible components, so it is a polynomial expression.

d. 4(x−3y2) + 5(x + y−1)

Images

Step 1.   Check whether the expression meets the criteria for a polynomial expression.

4(x −3y2) + 5(x + y −1) is not a polynomial expression because it is not composed of polynomials due to negative exponents.

e. Images

Images

Step 1.   Check whether the expression meets the criteria for a polynomial expression.

Images is not a polynomial expression because it contains division by a non-constant polynomial.

f. 2x2x − 4[3x + 5(x − 4)]

Images

Step 1.   Check whether the expression meets the criteria for a polynomial expression.

2x2x − 4[3x + 5(x − 4)] is composed of polynomials and contains permissible components, so it is a polynomial expression.

Simplifying Polynomial Expressions

When you simplify polynomial expressions, you proceed in an orderly fashion so that you do not violate the order of operations for real numbers. After all, the variables in polynomials are simply stand-ins for real numbers, so it is important that what you do is consistent with the rules for working with real numbers.

Images

Simplifying Polynomial Expressions

To simplify a polynomial expression:

  1. Simplify within grouping symbols, if any. Start with the innermost grouping symbol and work outward.

  2. Do powers, if indicated.

  3. Do multiplication, if indicated.

  4. Simplify the result.

Problem   Simplify.

a. 5 + 2(a − 5)

b. − 3(y + 4) + 8y

c. 9xyx(3y − 5x) − 2x2

d. (2x − 1)(3x − 4) + (x − 1)2

e. 2x2x − 4[3x + 5(x − 4)]

f. 2(x + 1)2

Solution

a. 5 + 2(a − 5)

Images

Step 1.   Do multiplication: 2(a − 5).

5 + 2(a − 5)

= 5 + 2a − 10

Step 2.   Simplify the result.

= 2a − 5

Step 3.   Review the main steps.

5 + 2(a − 5) = 5 + 2a − 10 = 2a − 5

b. − 3(y + 4) + 8y

Images

Step 1.   Do multiplication: − 3(y + 4).

− 3(y + 4) + 8y

= − 3y − 12 + 8y

Step 2.   Simplify the result.

= 5y − 12

Step 3.   Review the main steps.

− 3(y + 4) + 8y = − 3y − 12 + 8y = 5y − 12

c. 9xyx(3y − 5x) − 2x2

Images

Step 1.   Do multiplication: − x(3y − 5x).

9xyx(3y − 5x) − 2x2

= 9xy3xy + 5x2 − 2x2

Step 2.   Simplify the result.

= 3x2 + 6xy Write answer in descending powers of x.

Step 3.   Review the main steps.

9xyx(3y − 5x) − 2x2 = 9xy − 3xy + 5x2 − 2x2 = 3x2 + 6xy

d. (2x − 1)(3x − 4) + (x − 1)2

Images

Step 1.   Do the power: (x − 1)2.

(2x − 1)(3x − 4) + (x − 1)2

(2x − 1)(3x − 4) + x2 − 2x + 1

Step 2.   Do multiplication: (2x − 1)(3x − 4).

= 6x211x + 4 + x2 − 2x + 1

Step 3.   Simplify the results.

= 7x2 − 13x + 5

Step 4.   Review the main steps.

(2x − 1)(3x − 4) + (x − 1)2 = 6x2 − 11x + 4 + x2 − 2x + 1 = 7x2 − 13x + 5

e. 2x2x − 4[3x + 5(x − 4)]

Images

Step 1.   Simplify within the brackets. First, do multiplication: 5(x − 4).

2x2x − 4[3x + 5(x − 4)]

2x2x − 4[3x + 5x20]

Step 2.   Simplify 3x + 5x − 20 within the brackets.

= 2x2x − 4[8x20]

Step 3.   Do multiplication: − 4[8x − 20].

= 2x2x32x + 80

Step 4.   Simplify the result.

= 2x2 − 33x + 80

Step 5.   Review the main steps.

2x2x − 4[3x + 5(x − 4)] = 2x2x − 4[3x + 5x − 20]

2x2x − 4[8x − 20]

2x2x − 32x + 80 = 2x2 − 33x + 80

f. 2(x + 1)2

Images

Step 1.   Do the power: (x + 1)2.

= 2(x2 + 2x + 1)

Step 2.   Do multiplication: 2(x2 + 2x + 1).

= 2x2 + 4x + 2

Step 3.   Review the main steps.

2(x + 1)2 = 2(x2 + 2x + 1) = 2x2 + 4x + 2

Exercise 10

Images

Simplify.

1. 8 +2(x − 5)

2. −7(y − 4)+ 9y

3. 10xyx(5y − 3x) − 4x2

4. (3x − 1)(2x − 5)+(x +1)2

5. 3x2 − 4x − 5[x − 2(x − 8)]

6.x(x + 4)+5(x − 2)

7. (a − 5)(a +2) − (a − 6)(a − 4)

8. 5x2 − (− 3xy − 2y2)

9. x2 − [2xx(3x − 1)]+ 6x

10. (4x2y5)(− 2xy3)(− 3xy) − 15x2 y3(2x2 y6 + 2)