9

Multiplying Polynomials

This chapter presents rules for multiplying polynomials. You use the properties of real numbers and the rules of exponents when you multiply polynomials.

Multiplying Monomials

Images

Multiplying Monomials

To multiply monomials, (1) multiply the numerical coefficients, (2) multiply the variable factors using rules for exponents, and (3) use the product of the numerical coefficients as the coefficient of the product of the variable factors to obtain the answer.

Problem   Find the product.

a. (5x5y3)(3x2y6)

b. (−2a3b4)(8ab2)

c. (6x)(−2x)

d. (−10x3)(4x2)

e. (4x2y5)(−2xy3)(−3xy)

f. (x)(2)

Solution

a. (5x5y3)(3x2y6)

Images

Step 1.   Multiply the numerical coefficients.

(5)(3) = 15

Step 2.   Multiply the variable factors.

(x5y3)(x2y6) = x7y9

Step 3.   Use the product in step 1 as the coefficient of x7y9.

(5x5y3)(3x2y6) = 15x7y9

b. (−2a3b4)(8ab2)

Images

Step 1.   Multiply the numerical coefficients.

(−2)(8) = −16

Step 2.   Multiply the variable factors.

(a3b4)(ab2) = a4b6

Step 3.   Use the product in step 1 as the coefficient of a4b6.

(−2a3b4)(8ab2) = − 16a4b6

c. (6x)(−2x)

Images

Step 1.   Multiply the numerical coefficients.

(6)(−2) = −12

Step 2.   Multiply the variable factors.

(x)(x) = x2

Step 3.   Use the product in step 1 as the coefficient of x2.

(6x)(−2x) = −12x2

d. (−10x3)(4x2)

Images

Step 1.   Multiply the numerical coefficients.

(−10)(4) = −40

Step 2.   Multiply the variable factors.

(x3)(x2) = x5

Step 3.   Use the product in step 1 as the coefficient of x5.

(−10x3)(4x2) = −40x5

e. (4x2y5)(−2xy3)(−3xy)

Images

Step 1.   Multiply the numerical coefficients.

(4)(−2)(−3) = 24

Step 2.   Multiply the variable factors.

(x2y5)(xy3)(xy) = x4y9

Step 3.   Use the product in step 1 as the coefficient of x4y9.

(4x2y5)(−2xy3)(−3xy) = 24x4y9

f. (x)(2)

Images

Step 1.   Multiply the numerical coefficients.

(1)(2) = 2

Step 2.   Multiply the variable factors.

There is only one variable factor, x.

Step 3.   Use the product in step 1 as the coefficient of x.

(x)(2) = 2x

Multiplying Polynomials by Monomials

Images

Multiplying a Polynomial by a Monomial

To multiply a polynomial by a monomial, multiply each term of the polynomial by the monomial.

This rule is a direct application of the distributive property for real numbers.

Problem Find the product.

a. 2(x + 5)

b. x(3x − 2)

c. −8a3b5(2a2 −7ab2 −3)

d. x2(2x4 + 4x3 −3x + 6)

Solution

a. 2(x + 5)

Images

Step 1.   Multiply each term of the polynomial by the monomial.

2(x + 5)

= 2 ⋅ x + 2 ⋅ 5

= 2x + 10

b. x(3x − 2)

Images

Step 1.   Multiply each term of the polynomial by the monomial.

x(3x − 2)

= x ⋅ 3xx ⋅ 2

= 3x2 − 2x

c. −8a3b5(2a2 −7ab2 −3)

Images

Step 1.   Multiply each term of the polynomial by the monomial.

−8a3b5(2a2−7ab2−3)

= (−8a3b5)(2a2)−(−8a3b5)(7ab2)−(−8a3b5)(3)

= −16a5b5 + 56a4b7 + 24a3b5

d. x2(2x4 + 4x3 −3x + 6)

Images

Step 1.   Multiply each term of the polynomial by the monomial.

x2(2x4 + 4x3−3x + 6)

= x2 · 2x4 + x2 · 4x3x2 · 3x + x2 · 6

= 2x6 + 4x5−3x3 + 6x2

Multiplying Binomials

Images

Multiplying Two Binomials

To multiply two binomials, multiply all the terms of the second binomial by each term of the first binomial and then simplify.

Problem   Find the product.

a. (2x + 3)(x − 5)

b. (a + b)(c + d)

Solution

a. (2x + 3)(x − 5)

Images

Step 1.   Multiply all the terms of the second binomial by each term of the first binomial.

(2x + 3)(x−5)

= 2x · x + 2x · −5 + 3 · x + 3 · −5 Note: Mentally do this step.

= 2x2 −10x + 3x−15

Step 2.   Simplify.

= 2x2 −7x−15

Step 3.   Review your main result.

(2x + 3)(x−5) = 2x2 −7x−15

b. (a + b)(c + d)

Images

Step 1.   Multiply all the terms of the second binomial by each term of the first binomial.

(a + b)(c + d)

= a · c + a · d + b · c + b · d Note: Mentally do this step.

= ac + ad + bc + bd

Step 2.   Simplify.

There are no like terms, so ac + ad + bc + bd is simplified.

Step 3.   Review your main result.

(a + b)(c + d) = ac + ad + bc + bd

The FOIL Method

From the last problem, you can see that to find the product of two binomials, you compute four products, called partial products, using the terms of the two binomials. The FOIL method is a quick way to get those four partial products. Here is how FOIL works for finding the four partial products for (a + b)(c + d).

1. Multiply the two First terms: ac.

2. Multiply the two Outer terms: ad.

3. Multiply the two Inner terms: bc.

4. Multiply the two Last terms: bd.

Notice that FOIL is an acronym for first, outer, inner, and last. The inner and outer partial products are the middle terms.

Here is an example.

Images

Problem   Find the product using the FOIL method.

a. (5x + 4)(2x − 3)

b. (x − 2)(x − 5)

c. (x − 2)(x + 5)

d. (x + y)2

Solution

a. (5x + 4)(2x − 3)

Images

Step 1.   Find the partial products using the acronym FOIL.

(5x + 4)(2x−3)

Images Note: Mentally do this step.

= 10x2 − 15x + 8x − 12

Step 2.   Simplify.

= 10x2 − 7x − 12

Step 3.   Review your main result.

(5x + 4)(2x−3) = 10x2 −7x−12

b. (x − 2)(x − 5)

Images

Step 1.   Find the partial products using the acronym FOIL.

(x−2)(x−5)

Images

x2 − 5x − 2x + 10

Step 2.   Simplify.

= x2−7x + 10

Step 3.   Review your main result.

(x−2)(x + 5) = x2−7x + 10

c. (x−2)(x + 5)

Images

Step 1.   Find the partial products using the acronym FOIL.

(x−2)(x + 5)

Images

= x2 + 5x −2x − 10

Step 2.   Simplify.

= x2 + 3x−10

Step 3.   Review your main result.

(x−2)(x + 5) = x2 + 3x−10

d. (x + y)2

Images

Step 1.   Write as a product.

(x + y)2 = (x + y)(x + y)

Step 2.   Find the partial products using the acronym FOIL.

Images

Step 3.   Simplify.

= x2 + 2xy + y2

Step 4.   Review the main steps.

(x + y)2 = (x + y)(x + y) = x2 + 2xy + y2

Multiplying Polynomials

Images

Multiplying Two Polynomials

To multiply two polynomials, multiply all the terms of the second polynomial by each term of the first polynomial and then simplify.

Problem   Find the product.

a. (2x−1)(3x2−5x + 4)

b. (4x2 + 2x−5)(2x2x−3)

c. (x−2)(x2 + 2x + 4)

Solution

a. (2x−1)(3x2−5x + 4)

Images

Step 1.   Multiply all the terms of the second polynomial by each term of the first polynomial.

(2x−1)(3x2−5x + 4)

= 2x · 3x2 + 2x · −5x + 2x · 4 + −1 · 3x2 + −1 · −5x + −5x + 1 · 4      Note: Mentally do this step.

= 6x3 −10x2 + 8x−3x2 + 5x−4

Step 2.   Simplify.

= 6x3 −13x2 + 13x−4

b. (4x2 + 2x−5)(2x2x−3)

Images

Step 1.   Multiply all the terms of the second polynomial by each term of the first polynomial.

(4x2 + 2x−5)(2x2x−3)

= 4x2 · 2x2 + 4x2 · −x + 4x2 · −3 + 2x · 2x2 + 2x · −x + 2x · −3 + −5 · 2x2 + −5 · −x + −5 · −3

= 8x4 −4x3 −12x2 + 4x3 −2x2 −6x−10x2 + 5x + 15

Step 2.   Simplify.

= 8x4 −24x2x + 15

c. (x−2)(x2 + 2x + 4)

Images

Step 1.   Multiply all the terms of the second polynomial by each term of the first polynomial.

(x−2)(x2 + 2x + 4)

= x · x2 + x · 2x + x · 4 + −2 · x2 + −2 · 2x + −2 · 4

= x3 + 2x2 + 4x−2x2 −4x−8

Step 2.   Simplify.

= x3 − 8

Special Products

The answer to part c of the last problem is an example of the “difference of two cubes.” It is a special product. Here is a list of special products that you need to know for algebra.

Images

Special Products

Perfect Squares

(x + y)2 = x2 + 2xy + y2

(xy)2 = x2−2xy + y2

Difference of Two Squares

(x + y)(xy) = x2y2

Perfect Cubes

(x + y)3 = x3 + 3x2y + 3xy2 + y3

(xy)3 = x3−3x2y + 3xy2y3

Sum of Two Cubes

(x + y)(x2xy + y2) = x3 + y3

Difference of Two Cubes

(xy)(x2 + xy + y2) = x3y3

Exercise 9

Images

Find the product.

1. (4x5y3)(−3x2y3)

2. (−8a4b3)(5ab2)

3. (−10x3)(−2x2)

4. (−3x2y5)(6xy4)(−2xy)

5. 3(x − 5)

6. x(3x2 − 4)

7. −2a2b3(3a2 − 5ab2 − 10)

8. (2x − 3)(x + 4)

9. (x + 4)(x + 5)

10. (x − 4)(x − 5)

11. (x + 4)(x − 5)

12. (x − 4)(x + 5)

13. (x − 1)(2x2 − 5x + 3)

14. (2x2 + x − 3)(5x2x − 2)

15. (xy)2

16. (x + y)(xy)

17. (x + y)3

18. (xy)3

19. (x + y)(x2xy + y2)

20. (xy)(x2 + xy + y2)