Log In
Or create an account ->
Imperial Library
Home
About
News
Upload
Forum
Help
Login/SignUp
Index
Cover
Title Page
Copyright Page
Dedication
Preface
Contents
1. Wings
1.1. Function
1.2. Geometry
1.3. References
1.4. Problems
2. Review of Basic Fluid Dynamics
2.1. Forces and Moments Due to Pressure
2.2. The Basic Conservation Laws of Fluid Mechanics
2.3. Vector Calculus
2.4. Differential Forms of the Conservation Laws
2.5. Rotational Velocity and Irrotational Flow
2.6. Two-Dimensional Incompressible Flow
2.6.1. Uniform Flow
2.6.2. Source Flow
2.6.3. Vortex Flow
2.7. Bibliography
2.8. Problems
3. Incompressible Irrotational Flow About Symmetric Airfoils at Zero Lift
3.1. Uniform Two-Dimensional Irrotational Incompressible Flow About an Isolated Body
3.2. Superposition of Fundamental Solutions
3.3. Dimensionless Variables
3.4. Rankine Ovals
3.5. Line Source Distributions
3.6. Flow Past Thin Symmetric Airfoils
3.7. Errors Near The Stagnation Points
3.8. Numerical Solution Based on Line Doublet Distributions
3.9. Relation of Numerical to Analytical Solutions
3.10. Complex–Variable Methods
3.10.1. Flow Past an Ellipse
3.10.2. Joukowsky Airfoils
3.11. Problems
3.12. Computer Programs
4. Lifting Airfoils in Incompressible Irrotational Flow
4.1. The Thin Airfoil: Thickness and Camber Problems
4.2. Forces and Moments on a Thin Airfoil
4.3. The Kutta Condition
4.4. Circulation Specification
4.5. The Cambered Thin Airfoil
4.6. Aerodynamics of The Thin Airfoil
4.7. The Lumped-Vortex Method
4.8. Panel Methods
4.8.1. Program Panel
4.9. Complex-Variables Methods
4.10. References
4.11. Problems
4.12. Computer Program
5. Wings of Finite Span
5.1. The Vortex System for a Thin Planar Wing of Finite Span
5.2. The Vortex–Lattice Method
5.3. Induced Drag
5.4. Lifting-Line Theory
5.5. The Elliptic Lift Distribution
5.6. The Optimal Wing
5.7. Nonelliptic Lift Distributions
5.8. References
5.9. Problems
5.10. Computer Program
6. The Navier–Stokes Equations
6.1. The Stress at a Point
6.2. Newton’s Second Law For Fluids
6.3. Symmetry of Stresses
6.4. Molecular View of Stress in a Fluid
6.5. The No-Slip Condition
6.6. Unidirectional Flows
6.7. The Viscosity Coefficient
6.8. Pascal’s Law
6.9. Strain Versus Rotation
6.10. Isotropy
6.11. Vectors and Tensors
6.12. The Stress Tensor
6.13. The Rate-of-Strain Tensor
6.14. The Two Coefficients of Viscosity
6.15. The Navier–Stokes Equations
6.16. Problems
7. The Boundary Layer
7.1. The Laminar Boundary Layer
7.2. Use of the Boundary-Layer Equations
7.2.1. Skin Friction
7.2.2. Displacement Thickness
7.2.3. Momentum Thickness
7.3. The Momentum Integral Equation
7.4. Velocity Profile Fitting: Laminar Boundary Layers
7.5. Thwaites’s Method For Laminar Boundary Layers
7.6. Form Drag
7.7. Turbulent Flows
7.8. Velocity Profile Fitting: Turbulent Boundary Layers
7.9. Head’s Method For Turbulent Boundary Layers
7.10. Transition From Laminar to Turbulent Flow
7.11. Boundary Layer Separation
7.12. Airfoil Performance Characteristics
7.13. The Development of Circulation About a Sharp-Tailed Airfoil
7.14. Computation of Boundary Layer Growth Along An Airfoil
7.15. References
7.16. Problems
7.17. Computer Program
8. Panel Methods
8.1. Mathematical Foundations: Green’s Identity
8.2. Potential-Based Panel Methods
8.2.1. Constant-Potential Method
8.2.2. Linear-Potential Method
8.2.3. Equivalent Vortex Distributions
8.3. Vortex-Based Panel Methods
8.4. Source-Based Panel Methods
8.5. Comparisons of Source-, Doublet-, and Vortex-Based Methods
8.6. References
8.7. Problems
9. Finite Difference Methods
9.1. Boundary-Value Problems in One Dimension
9.2. Convergence and Order of Accuracy
9.3. Incompressible Potential Flow Past a Thin Symmetric Airfoil
9.3.1. Direct Methods
9.3.2. Iterative Methods
9.4. Initial Problems: The Heat Equation
9.4.1. An Explicit Finite-Difference Method
9.4.2. Stability
9.4.3. Convergence
9.4.4. The Crank–Nicolson Method
9.4.5. Backward-Difference Schemes
9.5. References
9.6. Problems
9.7. Computer Programs
10. Finite-Difference Solution of the Boundary Layer Equations
10.1. Statement of The Problem
10.2. Similar Solutions of The Laminar Incompressible Boundary Layer
10.2.1. Finite-Difference Methods for the Falkner–Skan Equation
10.2.2. Iterative Solution of Nonlinear Equations
10.2.3. A Finite-Difference Method Based on a Second-Order Differential Equation
10.2.4. A Finite-Difference Method Based on a System of First-Order Equations
10.3. Transformation of The Laminar Boundary-Layer Equations For Arbitrary Pressure Gradients
10.3.1. Program Bdylay
10.4. Turbulent Boundary Layers
10.5. Separated Flows
10.6. References
10.7. Problems
10.8. Computer Programs
11. Compressible Potential Flow Past Airfoils
11.1. Shock Waves and Sound Waves
11.2. Equations of Compressible Steady Potential Flow
11.3. The Prandtl–Glauert Equation
11.4. Subsonic Flow Past Thin Airfoils
11.5. Supersonic Flow Past Thin Airfoils
11.6. Transonic Flow Past Thin Airfoils
11.6.1. Aerodynamics in the Transonic Range
11.6.2. Solution of the Transonic Small-Disturbance Equation: Subcriticai Flow
11.6.3. Conservative versus Nonconservative Difference Schemes
11.6.4. Supercritical Flow and Upwind Differencing
11.6.5. The Relaxation Iteration
11.6.6. The Poisson Iteration
11.7. References
11.8. Problems
11.9. Computer Program
Appendix A. An Important Integral
Appendix B. The Integral
Appendix C. Potential Flow Past a Corner
Appendix D. Uniqueness of Solutions of Laplace Equation
Appendix E. Fourier-Series Expansions
Appendix F. Downwash Due to a Horseshoe Vortex
Appendix G. Geometrical Demonstration That Strain is a Tensor
Appendix H. Optimization of the SOR Method for the Laplace Equation
Appendix I. Structure of a Weak Shock Wave
Index
← Prev
Back
Next →
← Prev
Back
Next →