Log In
Or create an account -> 
Imperial Library
  • Home
  • About
  • News
  • Upload
  • Forum
  • Help
  • Login/SignUp

Index
Algorithms in a Nutshell A Note Regarding Supplemental Files Preface
Principle: Use Real Code, Not Pseudocode Principle: Separate the Algorithm from the Problem Being Solved Principle: Introduce Just Enough Mathematics Principle: Support Mathematical Analysis Empirically Audience Contents of This Book Conventions Used in This Book Using Code Examples Comments and Questions SafariĀ® Books Online Acknowledgments References
I. I
1. Algorithms Matter
1.1. Understand the Problem 1.2. Experiment if Necessary 1.3. Side Story 1.4. The Moral of the Story 1.5. References
2. The Mathematics of Algorithms
2.1. Size of a Problem Instance 2.2. Rate of Growth of Functions 2.3. Analysis in the Best, Average, and Worst Cases 2.4. Performance Families 2.5. Mix of Operations 2.6. Benchmark Operations 2.7. One Final Point 2.8. References
3. Patterns and Domains
3.1. Patterns: A Communication Language 3.2. Algorithm Pattern Format 3.3. Pseudocode Pattern Format 3.4. Design Format 3.5. Empirical Evaluation Format 3.6. Domains and Algorithms 3.7. Floating-Point Computations 3.8. Manual Memory Allocation 3.9. Choosing a Programming Language 3.10. References
II. II
4. Sorting Algorithms
4.1. Overview 4.2. Insertion Sort 4.3. Median Sort 4.4. Quicksort 4.5. Selection Sort 4.6. Heap Sort 4.7. Counting Sort 4.8. Bucket Sort 4.9. Criteria for Choosing a Sorting Algorithm 4.10. References
5. Searching
5.1. Overview 5.2. Sequential Search 5.3. Binary Search 5.4. Hash-based Search 5.5. Binary Tree Search
6. Graph Algorithms
6.1. Overview 6.2. Depth-First Search 6.3. Breadth-First Search 6.4. Single-Source Shortest Path 6.5. All Pairs Shortest Path 6.6. Minimum Spanning Tree Algorithms 6.7. References
7. Path Finding in AI
7.1. Overview 7.2. Depth-First Search 7.3. Breadth-First Search 7.4. A*Search 7.5. Comparison 7.6. Minimax 7.7. NegMax 7.8. AlphaBeta 7.9. References
8. Network Flow Algorithms
8.1. Overview 8.2. Maximum Flow 8.3. Bipartite Matching 8.4. Reflections on Augmenting Paths 8.5. Minimum Cost Flow 8.6. Transshipment 8.7. Transportation 8.8. Assignment 8.9. Linear Programming 8.10. References
9. Computational Geometry
9.1. Overview 9.2. Convex Hull Scan 9.3. LineSweep 9.4. Nearest Neighbor Queries 9.5. Range Queries 9.6. References
III. III
10. When All Else Fails
10.1. Variations on a Theme 10.2. Approximation Algorithms 10.3. Offline Algorithms 10.4. Parallel Algorithms 10.5. Randomized Algorithms 10.6. Algorithms That Can Be Wrong, but with Diminishing Probability 10.7. References
11. Epilogue
11.1. Overview 11.2. Principle: Know Your Data 11.3. Principle: Decompose the Problem into Smaller Problems 11.4. Principle: Choose the Right Data Structure 11.5. Principle: Add Storage to Increase Performance 11.6. Principle: If No Solution Is Evident, Construct a Search 11.7. Principle: If No Solution Is Evident, Reduce Your Problem to Another Problem That Has a Solution 11.8. Principle: Writing Algorithms Is Hard—Testing Algorithms Is Harder
IV. IV
A. Benchmarking
A.1. Statistical Foundation A.2. Hardware A.3. Reporting A.4. Precision
About the Authors Index About the Authors Colophon Copyright
  • ← Prev
  • Back
  • Next →
  • ← Prev
  • Back
  • Next →

Chief Librarian: Las Zenow <zenow@riseup.net>
Fork the source code from gitlab
.

This is a mirror of the Tor onion service:
http://kx5thpx2olielkihfyo4jgjqfb7zx7wxr3sd4xzt26ochei4m6f7tayd.onion