Log In
Or create an account -> 
Imperial Library
  • Home
  • About
  • News
  • Upload
  • Forum
  • Help
  • Login/SignUp

Index
Cover Half Title Title Page Copyright Dedication Contents Preface User Guide
0.1. Conventions and Organization of Files 0.2. Preparing and Working with Microsoft Excel[sup(®)]
1. Introduction
1.1. Definition of Econometrics 1.2. Regression Analysis
Cig.xls
1.3. Conclusion 1.4. Exercises References
Part 1. Description
2. Correlation
2.1. Introduction 2.2. Correlation Basics
Correlation.xls
2.3. Correlation Dangers
Correlation.xls
2.4. Ecological Correlation
EcolCorr.xls EcolCorrCPS.xls
2.5. Conclusion 2.6. Exercises References
3. PivotTables
3.1. Introduction 3.2. The Basic PivotTable
IndianaFTWorkers.xls (in Basic Tools\InternetData\CPS) Histogram.xla (Excel add-in)
3.3. The Crosstab and Conditional Average
IndianaFTWorkers.xls (in Basic Tools\InternetData\CPS)
3.4. PivotTables and the Conditional Mean Function
EastNorthCentralFTWorkers.xls
3.5. Conclusion 3.6. Exercises References
4. Computing the OLS Regression Line
4.1. Introduction 4.2. Fitting the Ordinary Least Squares Regression Line
Reg.xls
4.3. Least Squares Formulas
Reg.xls
4.4. Fitting the Regression Line in Practice
Reg.xls
4.5. Conclusion 4.6. Exercises References Appendix: Deriving the Least Squares Formulas
5. Interpreting OLS Regression
5.1. Introduction 5.2. Regression as Double Compression
DoubleCompression.xls EastNorthCentralFTWorkers.xls
5.3. Galton and Two Regression Lines
TwoRegressionLines.xls
5.4. Properties of the Sample Average and the Regression Line
OLSFormula.xls
5.5. Residuals and the Root-Mean-Square Error
ResidualPlot.xls RMSE.xls
5.6. R-Squared (R[sup(2)]
RSquared.xls
5.7. Limitations of Data Description with Regression
Anscombe.xls IMRGDPReg.xls SameRegLineDifferentData.xls HourlyEarnings.xls
5.8. Conclusion 5.9. Exercises References Appendix: Proof that the Sample Average is a Least Squares Estimator
6. Functional Form of the Regression
6.1. Introduction 6.2. Understanding Functional Form via an Econometric Fable
Galileo.xls
6.3. Exploring Two Other Functional Forms
IMRGDPFunForm.xls
6.4. The Earnings Function
SemiLogEarningsFn.xls
6.5. Elasticity 6.6. Conclusion 6.7. Exercises References Appendix: A Catalog of Functional Forms
FuncFormCatalog.xls
7. Multiple Regression
7.1. Introduction 7.2. Introducing Multiple Regression
MultiReg.xls
7.3. Improving Description via Multiple Regression
MultiReg.xls
7.4. Multicollinearity
Multicollinearity.xls
7.5. Conclusion 7.6. Exercises References Appendix: The Multivariate Least Squares Formula and the Omitted Variable Rule
8. Dummy Variables
8.1. Introduction 8.2. Defining and Using Dummy Variables
Female.xls
8.3. Properties of Dummy Variables
Female.xls
8.4. Dummy Variables as Intercept Shifters
Female.xls
8.5. Dummy Variable Interaction Terms
Female.xls
8.6. Conclusion 8.7. Exercises References
Part 2. Inference
9. Monte Carlo Simulation
9.1. Introduction 9.2. Random Number Generation Theory
RNGTheory.xls
9.3. Random Number Generation in Practice
RNGPractice.xls
9.4. Monte Carlo Simulation: An Example
MonteCarlo.xls
9.5. The Monte Carlo Simulation Add-In
MonteCarlo.xls MCSim.xla (Excel add-in) MCSimSolver.xla (Excel add-in)
9.6. Conclusion 9.7. Exercises References
10. Review of Statistical Inference
10.1. Introduction 10.2. Introducing Box Models for Chance Processes 10.3. The Coin-Flip Box Model
BoxModel.xls
10.4. The Polling Box Model
PresidentialHeights.xls
10.5. Hypothesis Testing
PValue.xla (Excel add-in)
10.6. Consistent Estimators
Consistency.xls
10.7. The Algebra of Expectations
AlgebraofExpectations.xls
10.8. Conclusion 10.9. Exercises References Appendix: The Normal Approximation
11. The Measurement Box Model
11.1. Introduction 11.2. Introducing the Problem 11.3. The Measurement Box Model 11.4. Monte Carlo Simulation
Measure.xls
11.5. Applying the Box Model
Measure.xls
11.6. Hooke’s Law
HookesLaw.xls
11.7. Conclusion 11.8. Exercises References
12. Comparing Two Populations
12.1. Introduction 12.2. Two Boxes 12.3. Monte Carlo Simulation of a Two Box Model
TwoBoxModel.xls
12.4. A Real Example: Education and Wages
CPS90Workers.xls
12.5. Conclusion 12.6. Exercises
CPS90ExpWorkers.xls
References
13. The Classical Econometric Model
13.1. Introduction 13.2. Introducing the CEM via a Skiing Example
Skiing.xls
13.3. Implementing the CEM via a Skiing Example
Skiing.xls
13.4. CEM Requirements 13.5. Conclusion 13.6. Exercises References
14. The Gauss–Markov Theorem
14.1. Introduction 14.2. Linear Estimators
GaussMarkovUnivariate.xls
14.3. Choosing an Estimator
GaussMarkovUnivariate.xls
14.4. Proving the Gauss–Markov Theorem in the Univariate Case
GaussMarkovUnivariate.xls
14.5. Linear Estimators in Regression Analysis
GaussMarkovBivariate.xls
14.6. OLS is BLUE: The Gauss–Markov Theorem for the Bivariate Case
GaussMarkovBivariate.xls
14.7. Using the Algebra of Expectations
GaussMarkovUnivariate.xls GaussMarkovBivariate.xls
14.8. Conclusion 14.9. Exercises References
15. Understanding the Standard Error
15.1. Introduction 15.2. SE Intuition
SEb1OLS.xls
15.3. The Estimated SE
SEb1OLS.xls
15.4. The Determinants of the SE of the OLS Sample Slope
SEb1OLS.xls
15.5. Estimating the SD of the Errors
EstimatingSDErrors.xls
15.6. The Standard Error of the Forecast and the Standard Error of the Forecast Error
SEForecast.xls
15.7. Conclusion 15.8. Exercises References
16. Confidence Intervals and Hypothesis Testing
16.1. Introduction 16.2. Distributions of OLS Regression Statistics
LinestRandomVariables.xls
16.3. Understanding Confidence Intervals
ConfidenceIntervals.xls
16.4. The Logic of Hypothesis Testing
HypothesisTest.xls
16.5. Z- and T-Tests
ConfidenceIntervals.xls ZandTTests.xls
16.6. A Practical Example
CigDataInference.xls
16.7. Conclusion 16.8. Exercises
SemiLogEarningsFn.xls
References
17. Joint Hypothesis Testing
17.1. Introduction 17.2. Restricted Regression
NoInterceptBug.xls
17.3. The Chi-Square Distribution
ChiSquareDist.xls
17.4. The F-Distribution
FDist.xls
17.5. An F-Test: The Galileo Example
FDistGalileo.xls
17.6. F- and T-Tests for Equality of Two Parameters
FDistFoodStamps.xls
17.7. F-Test for Multiple Parameters
FDistEarningsFn.xls
17.8. The Consequences of Multicollinearity
CorrelatedEstimates.xls
17.9. Conclusion 17.10. Exercises
MyMonteCarlo.xls
References
18. Omitted Variable Bias
18.1. Introduction 18.2. Why Omitted Variable Bias Is Important 18.3. Omitted Variable Bias Defined and Demonstrated
SkiingOVB.xls
18.4. A Real Example of Omitted Variable Bias
ComputerUse1997.xls
18.5. Random X’s: A More Realistic Data Generation Process
ComputerUse1997.xls
18.6. Conclusion 18.7. Exercises References
19. Heteroskedasticity
19.1. Introduction 19.2. A Univariate Example of Heteroskedasticity
Het.xls
19.3. A Bivariate Example of Heteroskedasticity
Het.xls
19.4. Diagnosing Heteroskedasticity with the B-P Test
Het.xls BPSampDist.xls
19.5. Dealing with Heteroskedasticity: Robust Standard Errors
HetRobusSE.xls OLSRegression.xla (Excel add-in)
19.6. Correcting for Heteroskedasticity: Generalized Least Squares
HetGLS.xls
19.7. A Real Example of Heteroskedasticity: The Earnings Function
WagesOct97.xls
19.8. Conclusion 19.9. Exercises References
20. Autocorrelation
20.1. Introduction 20.2. Understanding Autocorrelation
AutoCorr.xls
20.3. Consequences of Autocorrelation
AutoCorr.xls
20.4. Diagnosing Autocorrelation
AutoCorr.xls
20.5. Correcting Autocorrelation
AutoCorr.xls
20.6. Conclusion
CPIMZM.xls Luteinizing.xls
20.7. Exercises
Misspecification.xls FreeThrowAutoCorr.xls
References
21. Topics in Time Series
21.1. Introduction 21.2. Trends in Time Series Models
IndiaPopulation.xls ExpGrowthModel.xls AnnualGDP.xls Spurious.xls
21.3. Dummy Variables in Time Series Models
TimeSeriesDummyVariables.xls CoalMining.xls
21.4. Seasonal Adjustment
SeasonalTheory.xls SeasonalPractice.xls
21.5. Stationarity
Stationarity.xls
21.6. Weak Dependence
Stationarity.xls Spurious.xls
21.7. Lagged Dependent Variables
PartialAdjustment.xls
21.8. Money Demand
MoneyDemand.xls LaggedDepVar.xls
21.9. Comparing Forecasts Using Different Models of the DGP
AnnualGDP.xls ForecastingGDP.xls
21.10. Conclusion 21.11. Exercises References
22. Dummy Dependent Variable Models
22.1. Introduction 22.2. Developing Intuition about Dummy Dependent Variable Models
Raid.xls
22.3. The Campaign Contributions Example
CampCont.xls
22.4. A DDV Box Model
Raid.xls CampCont.xls
22.5. The Linear Probability Model (OLS with a Dummy Dependent Variable)
CampCont.xls LPMMonteCarlo.xls
22.6. Nonlinear Least Squares Applied to Dummy Dependent Variable Models
NLLSFit.xls NLLSMCSim.xls
22.7. Interpreting NLLS Estimates
NLLSFit.xls
22.8. Is There Mortgage Discrimination?
MortDisc.xls MortDiscMCSim.xls DDV.xla (Excel add-in) DDVGN.xla (Excel add-in)
22.9. Conclusion 22.10. Exercises References 23. Bootstrap 23.1. Introduction 23.2. Bootstrapping the Sample Percentage
PercentageBootstrap.xls
23.3. Paired XY Bootstrap
PairedXYBootstrap.xls
23.4. The Bootstrap Add-in
PairedXYBootstrap.xls Bootstrap.xla (Excel add-in)
23.5. Bootstrapping R[sup(2)]
BootstrapR2.xls
23.6. Conclusion 23.7. Exercises References
24. Simultaneous Equations
24.1. Introduction 24.2. Simultaneous Equations Model Example 24.3. Simultaneity Bias with OLS
SimEq.xls
24.4. Two Stage Least Squares
SimEq.xls
24.5. Conclusion 24.6. Exercises References
Glossary Index
  • ← Prev
  • Back
  • Next →
  • ← Prev
  • Back
  • Next →

Chief Librarian: Las Zenow <zenow@riseup.net>
Fork the source code from gitlab
.

This is a mirror of the Tor onion service:
http://kx5thpx2olielkihfyo4jgjqfb7zx7wxr3sd4xzt26ochei4m6f7tayd.onion