Log In
Or create an account -> 
Imperial Library
  • Home
  • About
  • News
  • Upload
  • Forum
  • Help
  • Login/SignUp

Index
Halftitle page Endorsement page Title page Copyright page Contents List of contributors Preface Part I Introduction
1 Fabless silicon photonics
1.1 Introduction 1.2 Silicon photonics: the next fabless semiconductor industry
1.2.1 Historical context – Photonics
1.3 Applications
1.3.1 Data communication
1.4 Technical challenges and the state of the art
1.4.1 Waveguides and passive components 1.4.2 Modulators 1.4.3 Photodetectors 1.4.4 Light sources 1.4.5 Approaches to photonic–electronic integration
Monolithic integration Multi-chip integration
1.5 Opportunities
1.5.1 Device engineering 1.5.2 Photonic system engineering
A transition from devices to systems
1.5.3 Tools and support infrastructure
Electronic–photonic co-design DFM and yield management
1.5.4 Basic science 1.5.5 Process standardization and a history of MPW services
ePIXfab and Europractice IME OpSIS CMC Microsystems Other organizations
References
2 Modelling and design approaches
2.1 Optical waveguide mode solver 2.2 Wave propagation
2.2.1 3D FDTD
FDTD modelling procedure
2.2.2 2D FDTD 2.2.3 Additional propagation methods
2D FDTD with Effective Index Method Beam Propagation Method (BPM) Eigenmode Expansion Method (EME) Coupled Mode Theory (CMT) Transfer Matrix Method (TMM)
2.2.4 Passive optical components
2.3 Optoelectronic models 2.4 Microwave modelling 2.5 Thermal modelling 2.6 Photonic circuit modelling 2.7 Physical layout 2.8 Software tools integration References
Part II Passive components
3 Optical materials and waveguides
3.1 Silicon-on-insulator
3.1.1 Silicon
Silicon – wavelength dependence Silicon – temperature dependence
3.1.2 Silicon dioxide
3.2 Waveguides
3.2.1 Waveguide design 3.2.2 1D slab waveguide – analytic method 3.2.3 Numerical modelling of waveguides 3.2.4 1D slab – numerical
Convergence tests Parameter sweep – slab thickness
3.2.5 Effective Index Method 3.2.6 Effective Index Method – analytic 3.2.7 Waveguide mode profiles – 2D calculations 3.2.8 Waveguide width – effective index 3.2.9 Wavelength dependence 3.2.10 Compact models for waveguides 3.2.11 Waveguide loss
3.3 Bent waveguides
3.3.1 3D FDTD bend simulations 3.3.2 Eigenmode bend simulations
3.4 Problems 3.5 Code listings References
4 Fundamental building blocks
4.1 Directional couplers
4.1.1 Waveguide mode solver approach
Coupler-gap dependence Coupler-length dependence Wavelength dependence
4.1.2 Phase 4.1.3 Experimental data 4.1.4 FDTD modelling
FDTD versus mode solver
4.1.5 Sensitivity to fabrication 4.1.6 Strip waveguide directional couplers 4.1.7 Parasitic coupling
Delta beta coupling
4.2 Y-branch 4.3 Mach–Zehnder interferometer 4.4 Ring resonators
4.4.1 Optical transfer function 4.4.2 Ring resonator experimental results
4.5 Waveguide Bragg grating filters
4.5.1 Theory
Grating coupling coefficient
4.5.2 Design
Transfer Matrix Method Grating physical structure design Modelling gratings using FDTD
4.5.3 Experimental Bragg gratings
Strip waveguide gratings Rib waveguide gratings Grating period
4.5.4 Empirical models for fabricated gratings
Computation lithography models Additional fabrication considerations
4.5.5 Spiral Bragg gratings
Thermal sensitivity
4.5.6 Phase-shifted Bragg gratings 4.5.7 Multi-period Bragg gratings 4.5.8 Grating-assisted contra-directional couplers
4.6 Problems 4.7 Code listings References
5 Optical I/O
5.1 The challenge of optical coupling to silicon photonic chips 5.2 Grating coupler
5.2.1 Performance 5.2.2 Theory 5.2.3 Design methodology
Analytic grating coupler design Design using 2D FDTD simulations Results Design parameters Cladding and buried oxide Compact design – focusing Mask layout 3D simulation
5.2.4 Experimental results
5.3 Edge coupler
5.3.1 Nano-taper edge coupler
Mode overlap calculation approach FDTD approach
5.3.2 Edge coupler with overlay waveguide
Eigenmode expansion method
5.4 Polarization 5.5 Problems 5.6 Code listings References
Part III Active components
6 Modulators
6.1 Plasma dispersion effect
6.1.1 Silicon, carrier density dependence
6.2 pn-Junction phase shifter
6.2.1 pn-Junction carrier distribution 6.2.2 Optical phase response 6.2.3 Small-signal response 6.2.4 Numerical TCAD modelling of pn-junctions
6.3 Micro-ring modulators
6.3.1 Ring tuneability 6.3.2 Small-signal modulation response 6.3.3 Ring modulator design
6.4 Forward-biased PIN junction
6.4.1 Variable optical attenuator
6.5 Active tuning
6.5.1 PIN phase shifter 6.5.2 Thermal phase shifter
6.6 Thermo-optic switch 6.7 Problems 6.8 Code listings References
7 Detectors
7.1 Performance parameters
7.1.1 Responsivity 7.1.2 Bandwidth
Transit time RC response Dark current
7.2 Fabrication 7.3 Types of detectors
7.3.1 Photoconductive detector 7.3.2 PIN detector 7.3.3 Avalanche detector
Charge region design
7.4 Design considerations
7.4.1 PIN junction orientation 7.4.2 Detector geometry
Detector length Detector width Detector height
7.4.3 Contacts
Contact material Contact geometry
7.4.4 External load on the detector
7.5 Detector modelling
7.5.1 3D FDTD optical simulations 7.5.2 Electronic simulations
7.6 Problems 7.7 Code listings References
8 Lasers
8.1 External lasers 8.2 Laser modelling 8.3 Co-packaging
8.3.1 Pre-made laser 8.3.2 External cavity lasers 8.3.3 Etched-pit embedded epitaxy
8.4 Hybrid silicon lasers 8.5 Monolithic lasers
8.5.1 III–V Monolithic growth 8.5.2 Germanium lasers
8.6 Alternative light sources 8.7 Problem References
Part IV System design
9 Photonic circuit modelling
9.1 Need for photonic circuit modelling 9.2 Components for system design 9.3 Compact models
9.3.1 Empirical or equivalent circuit models 9.3.2 S-parameters
9.4 Directional coupler – compact model
9.4.1 FDTD simulations 9.4.2 FDTD S-parameters
Directional coupler S-parameters
9.4.3 Empirical model – polynomial 9.4.4 S-parameter model passivity
Passivity assessment Passivity enforcement
9.5 Ring modulator – circuit model 9.6 Grating coupler – S-parameters
9.6.1 Grating coupler circuits
9.7 Code listings References
10 Tools and techniques
10.1 Process design kit (PDK)
10.1.1 Fabrication process parameters
Silicon thickness and etch GDS layer map Design rules
10.1.2 Library 10.1.3 Schematic capture 10.1.4 Circuit export 10.1.5 Schematic-driven layout 10.1.6 Design rule checking 10.1.7 Layout versus schematic
10.2 Mask layout
10.2.1 Components 10.2.2 Layout for electrical and optical testing 10.2.3 Approaches for fast GDS layout 10.2.4 Approaches for space-efficient GDS layout
References
11 Fabrication
11.1 Fabrication non-uniformity
11.1.1 Lithography process contours 11.1.2 Corner analysis 11.1.3 On-chip non-uniformity, experimental results
Ring resonators Grating couplers
11.2 Problems References
12 Testing and packaging
12.1 Electrical and optical interfacing
12.1.1 Optical interfaces
Grating couplers Edge couplers Individual fibres Spot-size converter Fibre array Free-space coupling Fibre taper coupling
12.1.2 Electrical interfaces
Bond pads Probing Wire bonding Flip-chip bonding
12.2 Automated optical probe stations
12.2.1 Parts
Sample stage Fibre array probe Electrical probes Microscopes
12.2.2 Software 12.2.3 Operation
Loading and aligning a chip/wafer Aligning the fibre array Chip registration Automated device testing
12.2.4 Optical test equipment
12.3 Design for test
12.3.1 Optical power budgets 12.3.2 Layout considerations 12.3.3 Design review and checklist
References
13 Silicon photonic system example
13.1 Wavelength division multiplexed transmitter
13.1.1 Ring-based WDM transmitter architectures 13.1.2 Common-bus WDM transmitter 13.1.3 Mod-Mux WDM transmitter 13.1.4 Conclusion
References
Index
  • ← Prev
  • Back
  • Next →
  • ← Prev
  • Back
  • Next →

Chief Librarian: Las Zenow <zenow@riseup.net>
Fork the source code from gitlab
.

This is a mirror of the Tor onion service:
http://kx5thpx2olielkihfyo4jgjqfb7zx7wxr3sd4xzt26ochei4m6f7tayd.onion