Log In
Or create an account -> 
Imperial Library
  • Home
  • About
  • News
  • Upload
  • Forum
  • Help
  • Login/SignUp

Index
Cover Title page Table of Contents Copyright Authors Biography Foreword Preface Acknowledgments Chapter 1: Introduction to Data Warehousing
Abstract 1.1. History of Data Warehousing 1.2. The Enterprise Data Warehouse Environment 1.3. Introduction to Data Vault 2.0 1.4. Data Warehouse Architecture
Chapter 2: Scalable Data Warehouse Architecture
Abstract 2.1. Dimensions of Scalable Data Warehouse Architectures 2.2. Data Vault 2.0 Architecture
Chapter 3: The Data Vault 2.0 Methodology
Abstract 3.1. Project Planning 3.2. Project Execution 3.3. Review and Improvement
Chapter 4: Data Vault 2.0 Modeling
Abstract 4.1. Introduction to Data Vault Modeling 4.2. Data Vault Modeling Vocabulary 4.3. Hub Definition 4.4. Link Definition 4.5. Satellite Definition
Chapter 5: Intermediate Data Vault Modeling
Abstract 5.1. Hub Applications 5.2. Link Applications 5.3. Satellite Applications
Chapter 6: Advanced Data Vault Modeling
Abstract 6.1. Point-in-Time Tables 6.2. Bridge Tables 6.3. Reference Tables
Chapter 7: Dimensional Modeling
Abstract 7.1. Introduction 7.2. Star Schemas 7.3. Multiple Stars 7.4. Dimension Design
Chapter 8: Physical Data Warehouse Design
Abstract 8.1. Database Workloads 8.2. Separate Environments for Development, Testing, and Production 8.3. Microsoft Azure Cloud Computing Platform 8.4. Physical Data Warehouse Architecture on Premise 8.5. Database Options 8.6. Setting up the Data Warehouse
Chapter 9: Master Data Management
Abstract 9.1. Definitions 9.2. Master Data Management Goals 9.3. Drivers for Managing Master Data 9.4. Operational vs. Analytical Master Data Management 9.5. Master Data Management as an Enabler for Managed Self-Service BI 9.6. Master Data Management as an Enabler for Total Quality Management 9.7. Creating a Model 9.8. Importing a Model 9.9. Integrating MDS with the Data Vault and Operational Systems
Chapter 10: Metadata Management
Abstract 10.1. What is Metadata? 10.2. Implementing the Meta Mart 10.3. Implementing the Metrics Vault 10.4. Implementing the Metrics Mart 10.5. Implementing the Error Mart
Chapter 11: Data Extraction
Abstract 11.1. Purpose of Staging Area 11.2. Hashing in the Data Warehouse 11.3. Purpose of the Load Date 11.4. Purpose of the Record Source 11.5. Types of Data Sources 11.6. Sourcing Flat Files 11.7. Sourcing Historical Data 11.8. Sourcing the Sample Airline Data 11.9. Sourcing Denormalized Data Sources 11.10. Sourcing Master Data from MDS
Chapter 12: Loading the Data Vault
Abstract 12.1. Loading Raw Data Vault Entities 12.2. Loading Reference Tables 12.3. Truncating the Staging Area
Chapter 13: Implementing Data Quality
Abstract 13.1. Business Expectations Regarding Data Quality 13.2. The Costs of Low Data Quality 13.3. The Value of Bad Data 13.4. Data Quality in the Architecture 13.5. Correcting Errors in the Data Warehouse 13.6. Transform, Enhance and Calculate Derived Data 13.7. Standardization of Data 13.8. Correct and Complete Data 13.9. Match and Consolidate Data 13.10. Creating Dimensions from Same-As Links
Chapter 14: Loading the Dimensional Information Mart
Abstract 14.1. Using the Business Vault as an Intermediate to the Information Mart 14.2. Materializing the Information Mart 14.3. Leveraging PIT and Bridge Tables for Virtualization 14.4. Implementing Temporal Dimensions 14.5. Implementing Data Quality Using PIT Tables 14.6. Dealing with Reference Data 14.7. About Hash Keys in the Information Mart
Chapter 15: Multidimensional Database
Abstract 15.1. Accessing the Information Mart 15.2. Creating Dimensions 15.3. Creating Cubes 15.4. Accessing the Cube
Subject Index
  • ← Prev
  • Back
  • Next →
  • ← Prev
  • Back
  • Next →

Chief Librarian: Las Zenow <zenow@riseup.net>
Fork the source code from gitlab
.

This is a mirror of the Tor onion service:
http://kx5thpx2olielkihfyo4jgjqfb7zx7wxr3sd4xzt26ochei4m6f7tayd.onion