Log In
Or create an account -> 
Imperial Library
  • Home
  • About
  • News
  • Upload
  • Forum
  • Help
  • Login/SignUp

Index
Title Page Copyright and Credits
Hands-On Neural Network Programming with C#
Dedication Packt Upsell
Why subscribe? Packt.com
Contributors
About the author About the reviewers Packt is searching for authors like you
Preface
Who this book is for What this book covers To get the most out of this book
Download the example code files Download the color images
Code in Action
Conventions used
Get in touch
Reviews
A Quick Refresher
Technical requirements Neural network overview
Neural network training A visual guide to neural networks
The role of neural networks in today's enterprises Types of learning
Supervised learning Unsupervised learning Reinforcement learning
Understanding perceptrons
Is this useful?
Understanding activation functions
Visual activation function plotting Function plotting
Understanding back propagation
Forward and back propagation differences
Summary References
Building Our First Neural Network Together
Technical requirements Our neural network Neural network training
Synapses Neurons Forward propagation Sigmoid function Backward propagation Calculating errors Calculating a gradient Updating weights Calculating values
Neural network functions
Creating a new network Importing an existing network Importing datasets Testing the network Exporting the network Training the network Testing the network Computing forward propagation Exporting the network Exporting a dataset
The neural network
Neuron connection
Examples
Training to a minimum Training to a maximum
Summary
Decision Trees and Random Forests
Technical requirements Decision trees
Decision tree advantages Decision tree disadvantages When should we use a decision tree?
Random forests
Random forest advantages Random forest disadvantages When should we use a random forest?
SharpLearning
Terminology Loading and saving models
Example code and applications
Saving a model Mean squared error regression metric F1 score Optimizations Sample application 1
The code
Sample application 2 – wine quality
The code
Summary References
Face and Motion Detection
Technical requirements Facial detection Motion detection
Code
Summary
Training CNNs Using ConvNetSharp
Technical requirements Getting acquainted  Filters Creating a network
Example 1 – a simple example Example 2 – another simple example Example 3 – our final simple example Using the Fluent API
GPU Fluent training with the MNIST database Training the network
Testing the data Predicting data Computational graphs
Summary References
Training Autoencoders Using RNNSharp
Technical requirements What is an autoencoder? Different types of autoencoder
Standard autoencoder Variational autoencoders De-noising autoencoders Sparse autoencoders
Creating your own autoencoder Summary References
Replacing Back Propagation with PSO
Technical requirements Basic theory
Swarm intelligence Particle Swarm Optimization
Types of Particle Swarm Optimizations Original Particle Swarm Optimization strategy Particle Swarm Optimization search strategy
Particle Swarm Optimization search strategy pseudo-code
Parameter effects on optimization
Replacing back propagation with Particle Swarm Optimization Summary
Function Optimizations: How and Why
Technical requirements Getting started Function minimization and maximization
What is a particle? Swarm initialization Chart initialization State initialization Controlling randomness Updating the swarm position Updating the swarm speed Main program initialization Running Particle Swarm Optimization Our user interface
Run button Rewind button Back button Play button Pause button Forward button
Hyperparameters and tuning
Function Strategy Dim size Upper bound Lower bound Upper bound speed Lower bound speed Decimal places Swarm size Max iterations Inertia Social weight Cognitive weight Inertia weight
Understanding visualizations
Understanding two-dimensional visualizations Understanding three-dimensional visualizations
Plotting results
Playing back results Updating the information tree
Adding new optimization functions
The purpose of functions Adding new functions Let's add a new function
Summary
Finding Optimal Parameters
Technical requirements Optimization
What is a fitness function?
Maximization Gradient-based optimization Heuristic optimization
Constraints
Boundaries Penalty functions General constraints Constrained optimization phases Constrained optimization difficulties Implementation
Meta-optimization
Fitness normalization Fitness weights for multiple problems Advice Constraints and meta-optimization Meta-meta-optimization
Optimization methods
Choosing an optimizer Gradient descent (GD)
How it works Drawbacks
Pattern Search (PS)
How it works
Local Unimodal Sampling (LUS)
How it works
Differential Evolution (DE)
How it works
Particle Swarm Optimization (PSO)
How it works
Many Optimizing Liaisons (MOL) Mesh (MESH)
Parallelism
Parallelizing the optimization problem  Parallel optimization methods
Necessary parameter tuning
And finally, the code Performing meta-optimization Computing fitness Testing custom problems Base problem Creating a custom problem Our Custom Problem
Summary References
Object Detection with TensorFlowSharp
Technical requirements Working with Tensors
TensorFlowSharp
Developing your own TensorFlow application Detecting images
Minimum score for object highlighting
Summary References
Time Series Prediction and LSTM Using CNTK
Technical requirements Long short-term memory
LSTM variants Applications of LSTM
CNTK terminology Our example
Coding our application
Loading data and graphs Loading training data Populating the graphs Splitting data
Running the application Training the network Creating a model Getting the next data batch Creating a batch of data
How well do LSTMs perform? Summary References
GRUs Compared to LSTMs, RNNs, and Feedforward networks
Technical requirements QuickNN Understanding GRUs Differences between LSTM and GRU
Using a GRU versus a LSTM
Coding different networks
Coding an LSTM Coding a GRU
Comparing LSTM, GRU, Feedforward, and RNN operations Network differences Summary
Activation Function Timings Function Optimization Reference
The Currin Exponential function
Description Input domain Modifications and alternative forms
The Webster function
Description Input distributions
The Oakley & O'Hagan function
Description Input domain
The Grammacy function
Description Input fomain
Franke's function
Description Input domain
The Lim function
Description Input domain
The Ackley function
Description Input domain Global minimum
The Bukin function N6
Description Input domain Global minimum
The Cross-In-Tray function
Description Input domain Global minima
The Drop-Wave function
Description Input domain Global minimum
The Eggholder function
Description Input domain Global minimum
The Holder Table function
Description Input domain Global minimum
The Levy function
Description Input domain Global minimum
The Levy function N13
Description Input domain Global minimum
The Rastrigin function
Description Input domain Global minimum
The Schaffer function N.2
Description Input domain Global minimum
The Schaffer function N.4
Description Input domain
The Shubert function
Description Input domain Global minimum
The Rotated Hyper-Ellipsoid function
Description Input domain Global minimum
The Sum Squares function
Description Input domain Global minimum
The Booth function
Description Input domain Global minimum
The Mccormick function
Description Input domain Global minimum
The Power Sum function
Description Input domain
The Three-Hump Camel function
Description Input domain Global minimum
The Easom function
Description Input domain Global minimum
The Michalewicz function
Description Input domain Global minima
The Beale function
Description Input domain Global minimum
The Goldstein-Price function
Description Input domain Global minimum
The Perm function
Description Input domain Global minimum
The Griewank function
Description Input domain Global minimum
The Bohachevsky function
Description Input domain Global minimum
The Sphere function
Description Input domain Global minimum
The Rosenbrock function
Description Input domain Global minimum
The Styblinski-Tang function
Description Input domain Global minimum
Summary Keep reading
Other Books You May Enjoy
Leave a review - let other readers know what you think
  • ← Prev
  • Back
  • Next →
  • ← Prev
  • Back
  • Next →

Chief Librarian: Las Zenow <zenow@riseup.net>
Fork the source code from gitlab
.

This is a mirror of the Tor onion service:
http://kx5thpx2olielkihfyo4jgjqfb7zx7wxr3sd4xzt26ochei4m6f7tayd.onion