Log In
Or create an account -> 
Imperial Library
  • Home
  • About
  • News
  • Upload
  • Forum
  • Help
  • Login/SignUp

Index
Title Page Copyright Page Preface Contents CHAPTER 1 Vector Spaces
1.1    Introduction 1.2    Scalars 1.3    Cartesian space 1.4    Vector spaces 1.5    Independence of vectors 1.6    Dimension and basis 1.7    Isomorphism 1.8    Subspaces 1.9    Sums and intersections of subspaces 1.10  Subspaces
CHAPTER 2 Linear Transformations and Matrices
2.1    Linear transformations 2.2    Matrix of a linear transformation 2.3    Examples of linear transformations 2.4    Multiplication of linear transformations 2.5    Multiplication of matrices 2.6    Sums and products by scalars 2.7    Sets of linear transformations of a vector space 2.8    Submatrices, partitioned matrices 2.9    Row and column matrices
CHAPTER 3 Systems of Linear Equations
3.1    Rank; row and column spaces of a matrix 3.2    Systems of linear homogeneous equations 3.3    Elementary transformations 3.4    Row-echelon matrices 3.5    Triangular and Hermite matrices 3.6    Properties of Hermite matrices 3.7    Elementary matrices 3.8    Equivalence of matrices 3.9    Nonhomogeneous linear equations
CHAPTER 4 Determinants
4.1    Definition of determinant 4.2    Basic properties of determinants 4.3    Proofs of the properties of determinants 4.4    Classical definition of determinant; Laplace expansion by minors 4.5    Determinants of products of square matrices; determinantal criterion for rank 4.6    Determinants of products of rectangular matrices 4.7    Adjoints and inverses of square matrices; Cramer’s Rule
CHAPTER 5 Equivalence Relations and Canonical Forms
5.1    Equivalence relations 5.2    Canonical forms and invariants 5.3    Alias and alibi 5.4    Change of basis 5.5    Similarity of matrices; eigenvalues 5.6    Equivalence and similarity of linear transformations
CHAPTER 6 Functions of Vectors
6.1    Bilinear forms 6.2    Canonical forms for skew-symmetric and symmetric matrices 6.3    Quadratic forms 6.4    Bilinear functions; dual spaces 6.5    Bilinear scalar functions and matrices; dualities 6.6    Quadratic functions 6.7    Hermitian functions 6.8    Determinants as multilinear functions
CHAPTER 7 Orthogonal and Unitary Equivalence
7.1    Euclidean space and inner products 7.2    Schwartz’s inequality, distance, and angle 7.3    Orthogonality 7.4    Orthogonal subspaces 7.5    Orthogonal transformations 7.6    Diagonalization of symmetric matrices 7.7    Unitary transformations 7.8    Adjoint of a linear transformation
CHAPTER 8 Structure of Polynomial Rings
8.1    Rings and subrings 8.2    Existence and uniqueness of transcendental extensions 8.3    Division algorithm; greatest common divisor 8.4    Factorization of polynomials 8.5    Algebraic extensions of a field 8.6    Congruence of polynomials 8.7    Direct sums of vector spaces 8.8    Idempotents and direct sums 8.9    Decomposition of algebras 8.10  Decomposition of simple algebraic extensions
CHAPTER 9 Equivalence of Matrices over a Ring
9.1    Matrices over a ring 9.2    Equivalence of matrices with polynomial elements 9.3    Matrices with integer elements 9.4    Vector spaces over the integers 9.5    Finitely generated vector spaces over the integers 9.6    Systems of linear differential equations with constant coefficients
CHAPTER 10 Similarity of Matrices
10.1  Minimum function 10.2  Invariant subspaces 10.3  Cayley-Hamilton Theorem 10.4  Primary linear transformations 10.5  Similarity, general case 10.6  Segre characteristics 10.6  Segre characteristics 10.8  Pairs of quadratic forms 10.9  Applications to projective geometry 10.10 Roots of matrices
CHAPTER 11 Linear Inequalities
11.1  Definitions and notation 11.2  Inequalities and convex sets 11.3  Convex cones 11.4  Polar cones and double description 11.5  Linear programming 11.6  The Minimax Theorem 11.7  Matrix games
Appendix I Mathematical Induction Appendix II Relations and Mappings Appendix III Bibliography Glossary of Special Symbols Index
  • ← Prev
  • Back
  • Next →
  • ← Prev
  • Back
  • Next →

Chief Librarian: Las Zenow <zenow@riseup.net>
Fork the source code from gitlab
.

This is a mirror of the Tor onion service:
http://kx5thpx2olielkihfyo4jgjqfb7zx7wxr3sd4xzt26ochei4m6f7tayd.onion