Log In
Or create an account -> 
Imperial Library
  • Home
  • About
  • News
  • Upload
  • Forum
  • Help
  • Login/SignUp

Index
Contents About This Book About The Author Chapter 1: Data Science Overview
Introduction to This Book The Current Data Science Landscape Introduction to Data Science Concepts Chapter Review
Chapter 2: Example Step-by-Step Data Science Project
Overview Business Opportunity Initial Questions Get the Data Select a Performance Measure Train / Test Split Target Variable Analysis Predictor Variable Analysis Adjusting the TEST Data Set Building a Predictive Model Decision Time Implementation Chapter Review
Chapter 3: SAS Coding
Overview Get Data Explore Data Manipulate Data Export Data
Chapter 4: Advanced SAS Coding
Overview DO Loop ARRAY Statements SCAN Function FIND Function PUT Function FIRST. and LAST. Statements Macros Overview Macro Variables Macros Defining and Calling Macros Chapter Review
Chapter 5: Create a Modeling Data Set
Overview ETL Extract Data Set Transform Load Chapter Review
Chapter 6: Linear Regression Models
Overview Regression Structure Gradient Descent Linear Regression Assumptions Linear Regression Simple Linear Regression Multiple Linear Regression Regularization Models Chapter Review
Chapter 7: Parametric Classification Models
Overview Classification Overview Logistic Regression Visualization Logistic Regression Model Linear Discriminant Analysis Chapter Review
Chapter 8: Non-Parametric Models
Overview Modeling Data Set K-Nearest Neighbor Model Tree-Based Models Random Forest Gradient Boosting Support Vector Machine (SVM) Neural Networks Chapter Review
Chapter 9: Model Evaluation Metrics
Overview General Information Model Output Accuracy Statistics Black-Box Evaluation Tools Chapter Review
  • ← Prev
  • Back
  • Next →
  • ← Prev
  • Back
  • Next →

Chief Librarian: Las Zenow <zenow@riseup.net>
Fork the source code from gitlab
.

This is a mirror of the Tor onion service:
http://kx5thpx2olielkihfyo4jgjqfb7zx7wxr3sd4xzt26ochei4m6f7tayd.onion