Log In
Or create an account ->
Imperial Library
Home
About
News
Upload
Forum
Help
Login/SignUp
Index
Titel
Impressum
Inhaltsverzeichnis
1 Einleitung
1.1 Zum Selbstverständnis dieses Buches
1.2 Zum Aufbau des Buches
2 Grundlagen der Regressionsanalyse
2.1 Einleitung
2.2 Kovarianz und Korrelation
2.2.1 Kovarianz
2.2.2 Korrelation
2.3 Bivariate lineare Regression
2.4 Multiple lineare Regression
2.4.1 Berechnung und Interpretation
2.4.2 Verallgemeinerung auf die Grundgesamtheit
2.5 Regressionsdiagnostik
2.5.1 Linearität
2.5.2 Homoskedastizität
2.5.3 Keine Multikollinearität
2.5.4 Normalverteilung der Residuen
2.5.5 Einflussreiche Fälle
2.6 Schrittweises Vorgehen
3 Interaktionen
3.1 Grundlagen
3.1.1 Über Interaktionseffekte
3.1.2 Interaktionen im linearen Regressionsmodell
3.2 Anwendung
3.2.1 Interaktionen mit einer dichotomen moderierenden Variable
3.2.2 Interaktionen mit einer metrischen moderierenden Variable
3.3 Zusammenfassung
3.4 Schrittweises Vorgehen
4 Logistische Regressionsanalyse
4.1 Grundlagen
4.1.1 Die Analyse dichotomer abhängiger Variablen
4.1.2 Bivariate Verfahren als Vorstufe zur logistischenRegressionsanalyse
4.1.3 Grundzüge des logistischen Regressionsmodells
4.2 Anwendung
4.2.1 Deskriptive Statistik und bivariate Analysen
4.2.2 Schätzung und Interpretation einer logistischen Regression
4.2.3 Regressionsdiagnostik
4.3 Zusammenfassung
4.4 Schrittweises Vorgehen
5 Mehrebenenanalyse
5.1 Grundlagen
5.1.1 Drei suboptimale Optionen mit hierarchischen Daten umzugehen
5.1.2 Wann ist ein Mehrebenenmodell statistisch notwendig?
5.1.3 Wie viele Fälle sind für eine Mehrebenenanalyse erforderlich?
5.2 Modellierungsstrategien in Mehrebenen-Situationen
5.2.1 Modellierung von Level-1-Effekten
5.2.2 Modellierung von Level-2-Effekten
5.2.3 Modellierung von Cross-Level-Interaktionen
5.3 Teststatistiken und Gütemaße
5.3.1 Devianz
5.3.2 AIC und BIC
5.3.3 Erklärte Varianz auf Mikro- und Makroebene
5.3.4 Maddala-R2
5.4 Erweiterungsmöglichkeiten und Schnittstellen zuanderen Verfahren
5.5 Schrittweises Vorgehen
6 Gepoolte Zeitreihenanalyse
6.1 Variation über Raum und Zeit
6.2 Besonderheiten der gepoolten Zeitreihenanalyse
6.2.1 Heterogenität
6.2.2 Zeitliche Dynamik
6.2.3 Heteroskedastizität
6.2.4 Räumliche Dynamik
6.3 Anwendung
6.3.1 TSCS-Daten in Stata
6.3.2 Zeitliche Dynamik
6.3.3 Heterogenität
6.3.4 Heteroskedastizität
6.3.5 Räumliche Abhängigkeit
6.4 Zusammenfassung und Ausblick
6.5 Schrittweises Vorgehen
7 Survival-Analysen
7.1 Grundlagen
7.1.1 Survival-Analysen und ihre begrifflichen Pendants inunterschiedlichen Wissenschaftsdisziplinen
7.1.2 Typen von Survival-Modellen
7.1.3 Grundlegende Begrifflichkeiten
7.1.4 Zensieren
7.1.5 Mathematisch-statistische Grundlagen von Survival-Analysen
7.2 Nicht-parametrische Methoden
7.2.1 Sterbetafel
7.2.2 Kaplan-Meier-Schätzer
7.3 Parametrische Modelle
7.3.1 Das exponentielle Modell
7.3.2 Weibull, Gompertz und log-logistische Modelle
7.3.3 Anwendungsprobleme parametrischer Modelle
7.4 Das semi-parametrische Cox-Modell
7.4.1 Vor- und Nachteile des Cox-Modells
7.4.2 Statistische Grundlagen des Cox-Modells und der PL-Schätzung
7.4.3 Das Cox-Modell in Stata
7.4.4 Stratifizierte Cox-Modelle
7.4.5 Tests auf Proportionalität der Hazards
7.4.6 Competing-Risks im Cox-Modell
7.4.7 Schätzung der Baseline-Hazard-Rate
7.4.8 Gütemaße und Residuendiagnostik
7.4.9 Sich über die Zeit verändernde UV
7.5 Schrittweises Vorgehen
Literatur
Index
← Prev
Back
Next →
← Prev
Back
Next →