Log In
Or create an account -> 
Imperial Library
  • Home
  • About
  • News
  • Upload
  • Forum
  • Help
  • Login/SignUp

Index
Preface Acknowledgements Introduction Part I  Relativistic field theory in Minkowski spacetime 1    Scalar field theory and its symmetries
1.1    The scalar field system 1.2    Symmetries of the system
1.2.1    SO( n ) internal symmetry 1.2.2    General internal symmetry 1.2.3    Spacetime symmetries – the Lorentz and Poincaré groups
1.3    Noether currents and charges 1.4    Symmetries in the canonical formalism 1.5    Quantum operators 1.6    The Lorentz group for D = 4
2    The Dirac field
2.1    The homomorphism of SL(2, ) → SO(3, 1) 2.2    The Dirac equation 2.3    Dirac adjoint and bilinear form 2.4    Dirac action 2.5    The spinors u ( , s ) and υ ( , s ) for D = 4 2.6    Weyl spinor fields in even spacetime dimension 2.7    Conserved currents
2.7.1    Conserved U(1) current 2.7.2    Energy–momentum tensors for the Dirac field
3    Clifford algebras and spinors
3.1    The Clifford algebra in general dimension
3.1.1    The generating -matrices 3.1.2    The complete Clifford algebra 3.1.3    Levi-Civita symbol 3.1.4    Practical -matrix manipulation 3.1.5    Basis of the algebra for even dimension D = 2 m 3.1.6    The highest rank Clifford algebra element 3.1.7    Odd spacetime dimension D = 2 m + 1 3.1.8    Symmetries of -matrices
3.2    Spinors in general dimensions
3.2.1    Spinors and spinor bilinears 3.2.2    Spinor indices 3.2.3    Fierz rearrangement 3.2.4    Reality
3.3    Majorana spinors
3.3.1    Definition and properties 3.3.2    Symplectic Majorana spinors 3.3.3    Dimensions of minimal spinors
3.4    Majorana spinors in physical theories
3.4.1    Variation of a Majorana Lagrangian 3.4.2    Relation of Majorana and Weyl spinor theories 3.4.3    U(1) symmetries of a Majorana field
Appendix 3A Details of the Clifford algebras for D = 2 m
3A.1    Traces and the basis of the Clifford algebra 3A.2    Uniqueness of the -matrix representation 3A.3    The Clifford algebra for odd spacetime dimensions 3A.4    Determination of symmetries of -matrices 3A.5    Friendly representations
4    The Maxwell an Yang–Mills gauge fields
4.1    The abelian gauge field
4.1.1    Gauge invariance and fields with electric charge 4.1.2    The free gauge field 4.1.3    Sources and Green’s function 4.1.4    Quantum electrodynamics 4.1.5    The stress tensor and gauge covariant translations
4.2    Electromagnetic duality
4.2.1    Dual tensors 4.2.2    Duality for one free electromagnetic field 4.2.3    Duality for gauge field and complex scalar 4.2.4    Electromagnetic duality for coupled Maxwell fields
4.3    Non-abelian gauge symmetry
4.3.1    Global internal symmetry 4.3.2    Gauging the symmetry 4.3.3    Yang–Mills field strength and action 4.3.4    Yang–Mills theory for G = SU( N )
4.4    Internal symmetry for Majorana spinors
5    The free Rarita–Schwinger field
5.1    The initial value problem 5.2    Sources and Green’s function 5.3    Massive gravitinos from dimensional reduction
5.3.1    Dimensional reduction for scalar fields 5.3.2    Dimensional reduction for spinor fields 5.3.3    Dimensional reduction for the vector gauge field 5.3.4    Finally
6 = 1 global supersymmetry in D = 4
6.1    Basic SUSY field theory
6.1.1    Conserved supercurrents 6.1.2    SUSY Yang–Mills theory 6.1.3    SUSY transformation rules
6.2    SUSY field theories of the chiral multiplet
6.2.1    U(1) R symmetry R 6.2.2    The SUSY algebra 6.2.3    More chiral multiplets
6.3    SUSY gauge theories
6.3.1    SUSY Yang–Mills vector multiplet 6.3.2    Chiral multiplets in SUSY gauge theories
6.4    Massless representations of -extended supersymmetry
6.4.1    Particle representations of -extended supersymmetry 6.4.2    Structure of massless representations
Appendix 6A Extended supersymmetry and Weyl spinors Appendix 6B On- and off-shell multiplets and degrees of freedom
Part II  Differential geometry and gravity 7    Differential geometry
7.1    Manifolds 7.2    Scalars, vectors, tensors, etc. 7.3    The algebra and calculus of differential forms 7.4    The metric and frame field on a manifold
7.4.1    The metric 7.4.2    The frame field 7.4.3    Induced metrics
7.5    Volume forms and integration 7.6    Hodge duality of forms 7.7    Stokes’ theorem and electromagnetic charges 7.8 p -form gauge fields 7.9    Connections and covariant derivatives
7.9.1    The first structure equation and the spin connection 7.9.2    The affine connection 7.9.3    Partial integration
7.10   The second structure equation and the curvature tensor 7.11   The nonlinear -model 7.12   Symmetries and Killing vectors
7.12.1 -model symmetries 7.12.2    Symmetries of the Poincaré plane
8    The first and second order formulations of general relativity
8.1    Second order formalism for gravity and bosonic matter 8.2    Gravitational fluctuations of flat spacetime
8.2.1    The graviton Green’s function
8.3    Second order formalism for gravity and fermions 8.4    First order formalism for gravity and fermions
Part III  Basic supergravity 9 = 1 pure supergravity in four dimensions
9.1    The universal part of supergravity 9.2    Supergravity in the first order formalism 9.3    The 1.5 order formalism 9.4    Local supersymmetry of = 1, D = 4 supergravity 9.5    The algebra of local supersymmetry 9.6    Anti-de Sitter supergravity
10 D = 11 supergravity
10.1 D ≤ 11 from dimensional reduction 10.2   The field content of D = 11 supergravity 10.3   Construction of the action and transformation rules 10.4   The algebra of D = 11 supergravity
11   General gauge theory
11.1   Symmetries
11.1.1   Global symmetries 11.1.2   Local symmetries and gauge fields 11.1.3   Modified symmetry algebras
11.2   Covariant quantities
11.2.1   Covariant derivatives 11.2.2   Curvatures
11.3   Gauged spacetime translations
11.3.1   Gauge transformations for the Poincaré group 11.3.2   Covariant derivatives and general coordinate transformations 11.3.3   Covariant derivatives and curvatures in a gravity theory 11.3.4   Calculating transformations of covariant quantities
Appendix 11A Manipulating covariant derivatives
11A.1   Proof of the main lemma 11A.2   Examples in supergravity
12   Survey of supergravities
12.1   The minimal superalgebras
12.1.1   Four dimensions 12.1.2   Minimal superalgebras in higher dimensions
12.2   The R -symmetry group 12.3   Multiplets
12.3.1   Multiplets in four dimensions 12.3.2   Multiplets in more than four dimensions
12.4   Supergravity theories: towards a catalogue
12.4.1   The basic theories and kinetic terms 12.4.2   Deformations and gauged supergravities
12.5   Scalars and geometry 12.6   Solutions and preserved supersymmetries
12.6.1   Anti-de Sitter superalgebras 12.6.2   Central charges in four dimensions 12.6.3   ‘Central charges’ in higher dimensions
Part IV  Complex geometry and global SUSY 13   Complex manifolds
13.1   The local description of complex and Kähler manifolds 13.2   Mathematical structure of Kähler manifolds 13.3   The Kähler manifolds CP n n 13.4   Symmetries of Kähler metrics
13.4.1   Holomorphic Killing vectors and moment maps 13.4.2   Algebra of holomorphic Killing vectors 13.4.3   The Killing vectors of CP 1 1
14   General actions with = 1 supersymmetry
14.1   Multiplets
14.1.1   Chiral multiplets 14.1.2   Real multiplets
14.2   Generalized actions by multiplet calculus
14.2.1   The superpotential 14.2.2   Kinetic terms for chiral multiplets 14.2.3   Kinetic terms for gauge multiplets
14.3   Kähler geometry from chiral multiplets 14.4   General couplings of chiral multiplets and gauge multiplets
14.4.1   Global symmetries of the SUSY -model 14.4.2   Gauge and SUSY transformations for chiral multiplets 14.4.3   Actions of chiral multiplets in a gauge theory 14.4.4   General kinetic action of the gauge multiplet 14.4.5   Requirements for an = 1 SUSY gauge theory
14.5   The physical theory
14.5.1   Elimination of auxiliary fields 14.5.2   The scalar potential 14.5.3   The vacuum state and SUSY breaking 14.5.4   Supersymmetry breaking and the Goldstone fermion 14.5.5   Mass spectra and the supertrace sum rule 14.5.6   Coda
Appendix 14A Superspace Appendix 14B Appendix: Covariant supersymmetry transformations
Part V  Superconformal construction of supergravity theories 15   Gravity as a conformal gauge theory
15.1   The strategy 15.2   The conformal algebra 15.3   Conformal transformations on fields 15.4   The gauge fields and constraints 15.5   The action 15.6   Recapitulation 15.7   Homothetic Killing vectors
16   The conformal approach to pure = 1 supergravity
16.1   Ingredients
16.1.1   Superconformal algebra 16.1.2   Gauge fields, transformations, and curvatures 16.1.3   Constraints 16.1.4   Superconformal transformation rules of a chiral multiplet
16.2   The action
16.2.1   Superconformal action of the chiral multiplet 16.2.2   Gauge fixing 16.2.3   The result
17   Construction of the matter-coupled = 1 supergravity
17.1   Superconformal tensor calculus
17.1.1   The superconformal gauge multiplet 17.1.2   The superconformal real multiplet 17.1.3   Gauge transformations of superconformal chiral multiplets 17.1.4   Invariant actions
17.2   Construction of the action
17.2.1   Conformal weights 17.2.2   Superconformal invariant action (ungauged) 17.2.3   Gauged superconformal supergravity 17.2.4   Elimination of auxiliary fields 17.2.5   Partial gauge fixing
17.3   Projective Kähler manifolds
17.3.1   The example of CP n n 17.3.2   Dilatations and holomorphic homothetic Killing vectors 17.3.3   The projective parametrization 17.3.4   The Kähler cone 17.3.5   The projection 17.3.6   Kähler transformations 17.3.7   Physical fermions 17.3.8   Symmetries of projective Kähler manifolds 17.3.9 T -gauge and decomposition laws 17.3.10   An explicit example: SU(1, 1)/U(1) model
17.4   From conformal to Poincaré supergravity
17.4.1   The superpotential 17.4.2   The potential 17.4.3   Fermion terms
17.5   Review and preview
17.5.1   Projective and Kähler–Hodge manifolds 17.5.2   Compact manifolds
Appendix 17A Kähler–Hodge manifolds
17A.1   Dirac quantization condition 17A.2   Kähler–Hodge manifolds
Appendix 17B Steps in the derivation of (17.7)
Part VI = 1 supergravity actions and applications 18   The physical = 1 matter-coupled supergravity
18.1   The physical action 18.2   Transformation rules 18.3   Further remarks
18.3.1   Engineering dimensions 18.3.2   Rigid or global limit 18.3.3   Quantum effects and global symmetries
19   Applications of = 1 supergravity
19.1   Supersymmetry breaking and the super-BEH effect
19.1.1   Goldstino and the super-BEH effect 19.1.2   Extension to cosmological solutions 19.1.3   Mass sum rules in supergravity
19.2   The gravity mediation scenario
19.2.1   The Polónyi model of the hidden sector 19.2.2   Soft SUSY breaking in the observable sector
19.3   No-scale models 19.4   Supersymmetry and anti-de Sitter space 19.5 R -symmetry and Fayet–Iliopoulos terms
19.5.1 The R -gauge field and transformations 19.5.2   Fayet–Iliopoulos terms 19.5.3   An example with non-minimal Kähler potential
Part VII  Extended = 2 supergravity 20   Construction of the matter-coupled = 2 supergravity
20.1   Global supersymmetry
20.1.1   Gauge multiplets for D = 6 20.1.2   Gauge multiplets for D = 5 20.1.3   Gauge multiplets for D = 4 20.1.4   Hypermultiplets 20.1.5   Gauged hypermultiplets
20.2 = 2 superconformal calculus
20.2.1   The superconformal algebra 20.2.2   Gauging of the superconformal algebra 20.2.3   Conformal matter multiplets 20.2.4   Superconformal actions 20.2.5   Partial gauge fixing 20.2.6   Elimination of auxiliary fields 20.2.7   Complete action 20.2.8 D = 5 and D = 6, = 2 supergravities
20.3   Special geometry
20.3.1   The family of special manifolds 20.3.2   Very special real geometry 20.3.3   Special Kähler geometry 20.3.4   Hyper-Kähler and quaternionic-Kähler manifolds
20.4   From conformal to Poincaré supergravity
20.4.1   Kinetic terms of the bosons 20.4.2   Identities of special Kähler geometry 20.4.3   The potential 20.4.4   Physical fermions and other terms 20.4.5   Supersymmetry and gauge transformations
Appendix 20A SU(2) conventions and triplets Appendix 20B Dimensional reduction 6 → 5 → 4
20B.1     Reducing from D = 6 → D = 5 20B.2     Reducing from D = 5 → D = 4
Appendix 20C Definition of rigid special Kähler geometry
21   The physical = 2 matter-coupled supergravity
21.1   The bosonic sector
21.1.1   The basic (ungauged) = 2, D = 4 matter-coupled supergravity 21.1.2   The gauged supergravities
21.2   The symplectic formulation
21.2.1   Symplectic definition 21.2.2   Comparison of symplectic and prepotential formulation 21.2.3   Gauge transformations and symplectic vectors 21.2.4   Physical fermions and duality
21.3   Action and transformation laws
21.3.1   Final action 21.3.2   Supersymmetry transformations
21.4   Applications
21.4.1   Partial supersymmetry breaking 21.4.2   Field strengths and central charges 21.4.3   Moduli spaces of Calabi–Yau manifolds
21.5   Remarks
21.5.1   Fayet–Iliopoulos terms 21.5.2 -model symmetries 21.5.3   Engineering dimensions
Part VIII  Classical solutions and the AdS/CFT correspondence 22   Classical solutions of gravity and supergravity
22.1   Some solutions of the field equations
22.1.1   Prelude: frames and connections on spheres 22.1.2   Anti-de Sitter space 22.1.3   AdS D obtained from its embedding in D D +1 22.1.4   Space time metrics with spherical symmetry 22.1.5   AdS–Schwarzschild spacetime 22.1.6   The Reissner–Nordström metric 22.1.7   A more general Reissner–Nordström solution
22.2   Killing spinors and BPS solutions
22.2.1   The integrability condition for Killing spinors 22.2.2   Commuting and anti-commuting Killing spinors
22.3   Killing spinors for anti-de Sitter space 22.4   Extremal Reissner–Nordström spacetimes as BPS solutions 22.5   The black hole attractor mechanism
22.5.1   Example of a black hole attractor 22.5.2   The attractor mechanism – real slow and simple
22.6   Supersymmetry of the black holes
22.6.1   Killing spinors 22.6.2   The central charge 22.6.3   The black hole potential
22.7   First order gradient flow equations 22.8   The attractor mechanism – fast and furious Appendix 22A Killing spinors for pp-waves
23   The AdS/CFT correspondence
23.1   The = 4 SYM theory 23.2   Type IIB string theory and D 3-branes 23.3   The D 3-brane solution of Type IIB supergravity 23.4   Kaluza–Klein analysis on AdS 5 5 S 5 5 23.5   Euclidean AdS and its inversion symmetry 23.6   Inversion and CFT correlation functions 23.7   The free massive scalar field in Euclidean AdS d +1 d +1 23.8   AdS/CFT correlators in a toy model 23.9   Three-point correlation functions 23.10   Two-point correlation functions 23.11   Holographic renormalization
23.11.1   The scalar two-point function in a CFT d d 23.11.2   The holographic trace anomaly
23.12   Holographic RG flows
23.12.1   AAdS domain wall solutions 23.12.2   The holographic c -theorem 23.12.3   First order flow equations
23.13   AdS/CFT and hydrodynamics
Appendix A      Comparison of notation
A.1   Spacetime and gravity A.2   Spinor conventions A.3   Components of differential forms A.4   Covariant derivatives
Appendix B      Lie algebras and superalgebras
B.1   Groups and representations B.2   Lie algebras B.3   Superalgebras
References Index
  • ← Prev
  • Back
  • Next →
  • ← Prev
  • Back
  • Next →

Chief Librarian: Las Zenow <zenow@riseup.net>
Fork the source code from gitlab
.

This is a mirror of the Tor onion service:
http://kx5thpx2olielkihfyo4jgjqfb7zx7wxr3sd4xzt26ochei4m6f7tayd.onion