“Symptoms, then, are in reality nothing but the cry from suffering organs.”
—Jean-Martin Charcot
“Man is an intelligence in servitude to his organs.”
—Aldous Huxley
“When every part of the machine is correctly adjusted and in perfect harmony, health will hold dominion over the human organism by laws as natural and immutable as the laws of gravity.”
—Andrew T. Still
In this section, we have divided the High-Yield Facts into the major Organ Systems. Within each Organ System are several subsections, including Embryology, Anatomy, Physiology, Pathology, and Pharmacology. As you progress through each Organ System, refer back to information in the previous subsections to organize these basic science subsections into a “vertically integrated” framework for learning. Below is some general advice for studying the organ systems by these subsections.
Relevant embryology is included in each organ system subsection. Embryology tends to correspond well with the relevant anatomy, especially with regard to congenital malformations.
Several topics fall under this heading, including gross anatomy, histology, and neuroanatomy. Do not memorize all the small details; however, do not ignore anatomy altogether. Review what you have already learned and what you wish you had learned. Many questions require two or more steps. The first step is to identify a structure on anatomic cross section, electron micrograph, or photomicrograph. The second step may require an understanding of the clinical significance of the structure.
When studying, stress clinically important material. For example, be familiar with gross anatomy and radiologic anatomy related to specific diseases (eg, Pancoast tumor, Horner syndrome), traumatic injuries (eg, fractures, sensory and motor nerve deficits), procedures (eg, lumbar puncture), and common surgeries (eg, cholecystectomy). There are also many questions on the exam involving x-rays, CT scans, and neuro MRI scans. Many students suggest browsing through a general radiology atlas, pathology atlas, and histology atlas. Focus on learning basic anatomy at key levels in the body (eg, sagittal brain MRI; axial CT of the midthorax, abdomen, and pelvis). Basic neuroanatomy (especially pathways, blood supply, and functional anatomy), associated neuropathology, and neurophysiology have good yield. Please note that many of the photographic images in this book are for illustrative purposes and are not necessarily reflective of Step 1 emphasis.
The portion of the examination dealing with physiology is broad and concept oriented and thus does not lend itself as well to fact-based review. Diagrams are often the best study aids, especially given the increasing number of questions requiring the interpretation of diagrams. Learn to apply basic physiologic relationships in a variety of ways (eg, the Fick equation, clearance equations). You are seldom asked to perform complex calculations. Hormones are the focus of many questions, so learn their sites of production and action as well as their regulatory mechanisms.
A large portion of the physiology tested on the USMLE Step 1 is clinically relevant and involves understanding physiologic changes associated with pathologic processes (eg, changes in pulmonary function with COPD). Thus, it is worthwhile to review the physiologic changes that are found with common pathologies of the major organ systems (eg, heart, lungs, kidneys, GI tract) and endocrine glands.
Questions dealing with this discipline are difficult to prepare for because of the sheer volume of material involved. Review the basic principles and hallmark characteristics of the key diseases. Given the clinical orientation of Step 1, it is no longer sufficient to know only the “buzzword” associations of certain diseases (eg, café-au-lait macules and neurofibromatosis); you must also know the clinical descriptions of these findings.
Given the clinical slant of the USMLE Step 1, it is also important to review the classic presenting signs and symptoms of diseases as well as their associated laboratory findings. Delve into the signs, symptoms, and pathophysiology of major diseases that have a high prevalence in the United States (eg, alcoholism, diabetes, hypertension, heart failure, ischemic heart disease, infectious disease). Be prepared to think one step beyond the simple diagnosis to treatment or complications.
The examination includes a number of color photomicrographs and photographs of gross specimens that are presented in the setting of a brief clinical history. However, read the question and the choices carefully before looking at the illustration, because the history will help you identify the pathologic process. Flip through an illustrated pathology textbook, color atlases, and appropriate Web sites in order to look at the pictures in the days before the exam. Pay attention to potential clues such as age, sex, ethnicity, occupation, recent activities and exposures, and specialized lab tests.
Preparation for questions on pharmacology is straightforward. Memorizing all the key drugs and their characteristics (eg, mechanisms, clinical use, and important side effects) is high yield. Focus on understanding the prototype drugs in each class. Avoid memorizing obscure derivatives. Learn the “classic” and distinguishing toxicities of the major drugs. Do not bother with drug dosages or trade names. Reviewing associated biochemistry, physiology, and microbiology can be useful while studying pharmacology. There is a strong emphasis on ANS, CNS, antimicrobial, and cardiovascular agents as well as NSAIDs. Much of the material is clinically relevant. Newer drugs on the market are also fair game.