Notas

Capítulo 1

1. National Center for Chronic Disease Prevention and Health Promotion, “About Chronic Disease”, Centers for Disease Control and Prevention, 5 de septiembre de 2018, https://www.cdc.gov/chronicdisease/about/index.htm, consultado el 19 de octubre de 2018.

2. S. Hatfield, “Chronic Disease: Costly, Deadly, and Preventable”, National Consumers League, http://www.nclnet.org/chronicdisease.

3. S. M. de la Monte, “Insulin Resistance and Alzheimer’s Disease”, BMB Reports 42, núm. 8 (31 de agosto de 2009): 475-481. https://www.ncbi.nlm.nih.gov/pubmed/19712582.

4. S. Gill y P. Satchidananda, “A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits”, Cell Metabolism 22, núm. 5 (2015): 789-798. DOI: 10.1016/j.cmet. 2015.09.005.

5. T. Neltner y M. Maffini, “Generally Recognized as Secret: Chemicals Added to Food in the United States”, NRDC Report, abril de 2014, https://www.nrdc.org/sites/default/files/safety-loophole-for-chemicals-in-food-report.pdf.

6. R. J. de Souza et al., “Intake of Saturated and Trans Unsaturated Fatty Acids and Risk of All Cause Mortality, Cardiovascular Disease, and Type 2 Diabetes: Systematic Review and Meta-analysis of Observational Studies”, BMJ, 11 de agosto de 2015. DOI: 10.1136/bmj.h3978.

7. V. T. Samuel, K. F. Petersen y G. J. Shulman, “Lipid-Induced Insulin Resistance: Unravelling the Mechanism”, Lancet 375, núm. 9733 (26 de junio de 2010): 2267-2277. DOI: 10.1016/S0140-6736(10)60408-4.

8. K. Kavanagh et al., “Trans Fat Diet Induces Abdominal Obesity and Changes in Insulin Sensitivity in Monkeys”, Obesity 15, núm. 7 (julio de 2007): 1675-1684. DOI: 10.1038/oby.2007.200.

9. M. C. Morris et al., “Dietary Fats and the Risk of Incident Alzheimer Disease”, Archives of Neurology 60, núm. 2 (febrero de 2003): 194-200. https://www.ncbi.nlm.nih.gov/pubmed/12580703.

10. International Agency for Research on Cancer, “Evaluation of Five Organophophate Insecticides and Herbicides”, IARC Monographs 112, 20 de marzo de 2015, https://www.iarc.fr/en/media-centre/iarcnews/pdf/MonographVolume112.pdf, consultado el 29 de octubre de 2018.

11. M. Pall, “How to Approach the Challenge of Minimizing Non-Thermal Health Effects of Microwave Radiation from Electrical Devices”, International Journal of Innovative Research in Engineering and Management 2, núm. 5 (septiembre de 2015), https://www.researchgate.net/publication/283017154HowtoApproachtheChallengeofMinimizingNon-ThermalHealthEffectsofMicrowaveRadiationfromElectricalDevices, consultado el 30 de octubre de 2018.

12. M. Pall, “Electromagnetic Fields Act via Activation of Voltage-gated Calcium Channels to Produce Beneficial or Adverse Effects”, Journal of Cellular and Molecular Medicine 17, núm. 8 (2013): 958-965. DOI: 10.1111/jcmm.12088.

13. M. Pall, “Electromagnetic Fields Act Similarly in Plants as in Animals: Probable Activation of Calcium Channels via Their Voltage Sensor”, Current Chemical Biology 10, núm. 1 (2016): 74-82. DOI: 10.2174/2212796810666160419160433.

14. M. Pall, “Microwave Frequency Electromagnetic Fields (EMFs) Produce Widespread Neurophyschiatric Effects Including Depression”, Journal of Chemical Neuroanatomy 75, parte B (septiembre de 2016): 43-51. DOI: 10.1016/j.jchemneu.2015.08.001.

15. C. M. Benbrook, “Impacts of Genetically Engineered Crops on Pesticide Use in the U.S. – the First Sixteen Years”, Environmental Sciences Europe 24, núm. 1 (28 de septiembre de 2012): 24. DOI: 10.1186/2190-4715-24-24.

16. M. Pall, “Scientific Evidence Contradicts Findings and Assumptions of Canadian Safety Panel 6: Microwaves Act Through Voltage-Gated Calcium Channel Activation to Induce Biological Impacts at Non-Thermal Levels, Supporting a Paradigm Shift for Microwave/Lower Frequency Electromagnetic Field Action”, Reviews on Environmental Health 30, núm. 2 (2015): 99-116. DOI: 10.1515/reveh-2015-0001.

17. R. Sender, S. Fuchs y R. Milo, “Revised Estimates for the Number of Human and Bacteria Cells in the Body”, PLoS One, consultado el 24 de septiembre de 2018. DOI: 10.1371/journal.pbio.1002533.

18. C. E. Forsythe et al., “Comparison of Low Fat and Low Carbohydrate Diets on Circulating Fatty Acid Composition and Markers of Infla­mmation”, Lipids 43, núm. 1 (2007): 65-77. DOI: 10.1007/s11745-007-3132-7.

19. Idem.

20. N. Lane, Power, Sex, Suicide: Mitochondria and the Meaning of Life (Oxford: Oxford University Press, 2006).

21. S. Gill y P. Satchidananda, “A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits”, Cell Metabolism 22, núm. 5 (2015): 789-798. DOI: 10.1016/j.cmet.2015.09.005.

22. R. Pamploma, “Mitochondrial DNA Damage and Animal Longevity: Insights from Comparative Studies”, Journal of Aging and Research 2011 (4 de enero de 2011). DOI: 10.4061/2011/807108.

Capítulo 2

1. V. R. Young y N. S. Scrimshaw, “The Physiology of Starvation”, Scientific American 225, núm. 4 (octubre de 1971): 14-21. https://www.ncbi.nlm.nih.gov/pubmed/5094959.

2. E. A. Genné-Bacon, “Thinking Evolutionarily about Obesity”, Yale Journal of Biology and Medicine 87, núm. 2 (6 de junio de 2014): 99-112, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031802/.

3. R. Arbesmann, “Fasting and Prophecy in Pagan and Christian Antiquity”, Traditio 7 (1951): 1-71. DOI: 10.1017/s0362152900015117.

4. J. D. M. Derrett y V. Macdermot, “The Cult of the Seer in the Ancient Middle East: A Contribution to Current Research on Hallucinations Drawn from Coptic and Other Texts”, Man 8, núm. 1 (1973): 146. https://www.jstor.org/stable/2800682. DOI: 10.2307/2800682.

5. M. M. Ali, The Religion of Islam: A Comprehensive Discussion of the Sources, Principles and Practices of Islam (Dublin, OH: Ahmadiyya Anjuman Ishaat Islam Lahore USA, 2014).

6. D. W. Mitchell y S. Jacoby, Buddhism: Introducing the Buddhist Experience (Nueva York: Oxford University Press, 2014).

7. P. Dundas, The Jains (Londres: Routledge, 2010).

8. P. S. Jaini, Collected Papers on Buddhist Studies (Delhi: Motilal Banarsidass Publishers, 2001).

9. L. Kohn, Daoist Body Cultivation: Traditional Models and Contemporary Practices (Magdalena, N.M.: Three Pine Press, 2006).

10. S. Arthur, Early Daoist Dietary Practices – Examining Ways to Health and Longevity (Lanham, MD: Lexington Books, 2015).

11. S. Arthur, “Eating Your Way to Immortality: Early Daoist Self-Cultivation Diets”, Journal of Daoist Studies 2, núm. 1 (2009): 32-63. DOI: 10.1353/dao.2009.0001.

12. T. Keneally, Three Famines: Starvation and Politics (Nueva York: Pu­blicAffairs, 2011).

13. S. A. Russell, Hunger: An Unnatural History (Nueva York: Basic Books, 2008).

14. J. L. Brockington, The Sanskrit Epics (Leiden, Países Bajos: Brill, 1998).

15. P. O’Malley, Biting at the Grave: The Irish Hunger Strikes and the Politics of Despair (Boston: Beacon Press, 2001).

16. S. Ramachandran, “India’s Forgotten Fast”, I Manipur, http://imanipur.blogspot.com/2011/09/indias-forgotten-fast.html.

17. N. G. Wilson (ed.), Encyclopedia of Ancient Greece (Londres: Psychology Press, 2006).

18. L. B. Hazzard, Scientific Fasting: The Ancient and Modern Key to Health (Whitefish, MT: Kessinger Publishing, 1996).

19. S. Graham, The Greatest Health Discovery: Natural Hygiene and Its Evolution, Past, Present & Future (Chicago: Natural Hygiene Press, 1972).

20. H. M. Shelton, Fasting Can Save Your Life. 2a. ed. (Chicago: Natural Hygiene Press, 1981).

Capítulo 3

1. S. Furmli et al., “Therapeutic Use of Intermittent Fasting for People with Type 2 Diabetes as an Alternative to Insulin”, BMJ Case Reports 2018. DOI: 10.1136 /bcr-2017-221854.

2. Joseph Mercola, “Autophagy Finally Considered for Disease Treatment”, https://articles.mercola.com/sites/articles/archive/2018/06/27/autophagy-health-benefits.aspx.

3. National Institutes of Health, “4. The Adult Stem Cell”, https://stem cells.nih.gov/info/2001report/chapter4.htm http://stemcells.nih.gov/info/basics/pages/basics4.aspx.

4. C. W. Cheng et al., “Prolonged Fasting Reduces IGF-1/PKA to Promote Hematopoietic-Stem-Cell-Based Regeneration and Reverse Immunosuppression”, Cell Stem Cell 14, núm. 6 (5 de junio de 2014): 810-823. https://www.sciencedirect.com/science/article/pii/S1934590914 001519.

5. M. M. Mihaylova et al., “Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging”, Cell Stem Cell 22, núm. 5 (3 de mayo de 2018): 769-778. DOI: 10.1016/j.stem.2018.04.001.

6. R. Morello-Frosch et al., “Environmental Chemicals in an Urban Population of Pregnant Women and Their Newborns from San Francisco”, Environmental Science and Technology 50, núm. 22 (2016): 12464-12472. DOI: 10.1021/acs.est.6b03492.

7. Environmental Working Group, “Body Burden: The Pollution in Newborns”, 14 de julio de 2005, https://www.ewg.org/research/body-burden-pollution-newborns, consultado el 29 de octubre de 2018.

8. D. L. Frape et al., “Diurnal Trends in Responses of Blood Plasma Concentrations of Glucose, Insulin, and C-peptide following High- and Low-fat Meals and Their Relation to Fat Metabolism in Healthy Middle-aged Volunteers”, British Journal of Nutrition 77, núm. 4 (abril de 1997): 523-535. https://www.ncbi.nlm.nih.gov/pubmed/9155503; M. Gibbs et al., “Diurnal Postprandial Responses to Low and High Glycaemic Index Mixed Meals”, Clinical Nutrition 33, núm. 5 (octubre de 2014): 889-894. DOI: 10.1016/j.clnu.2013.09.018; C. R. Marinac et al., “Frequency and Circadian Timing of Eating May Influence Biomarkers of Inflammation and Insulin Resistance Associated with Breast Cancer Risk”, PLoS One 10, núm. 8 (25 de agosto de 2015). DOI: 10.1371/journal.pone.0136240; L. Morgan et al., “Circadian Aspects of Postprandial Metabolism”, Chronobiology International 20, núm. 5 (2003): 795-808. DOI: 10.1081/cbi-120024218; K. S. Polonsky, B. D. Given y E. Van Cauter, “Twenty-four-hour Profiles and Pulsatile Patterns of Insulin Secretion in Normal and Obese Subjects”, Journal of Clinical Investigation 81, núm. 2 (1988): 442-448. DOI: 10.1172/jci113339.

9. Joseph Mercola, “Gut Microbiome May Be a Game-Changer for Cancer Prevention and Treatment”, https://articles.mercola.com/sites/articles/archive/2018/06/11/gut-microbiome-game-changer.aspx.

10. R. Shen et al., “Neuronal Energy-sensing Pathway Promotes Energy Balance by Modulating Disease Tolerance”, Proceedings of the National Academy of Sciences 113, núm. 23 (2016). DOI: 10.1073/pnas.1606 10 6113.

11. J. Fung y J. Moore, The Complete Guide to Fasting: Heal Your Body Through Intermittent, Alternate-Day, and Extended Fasting (Las Vegas: Victory Belt Publishing, 2016).

12. J. Volek y S. D. Phinney, The Art and Science of Low Carbohydrate Living: An Expert Guide to Making the Life-saving Benefits of Carbohydrate Restriction Sustainable and Enjoyable (Lexington, KY: Beyond Obesity, 2011).

13. D. Y. Kim et al., “Ketone Bodies Are Protective against Oxidative Stress in Neocortical Neurons”, Journal of Neurochemistry 101, núm. 5 (junio de 2007): 1316-1326. DOI: 10.1111/j.1471-4159.2007.04483.x.

14. D. Stipp, “Is Fasting Good for You?”, Scientific American 24 (5 de marzo de 2015): 56-57. DOI: 10.1038/scientificamericansecrets0315-56.

15. M. A. McNally y A. L. Hartman, “Ketone Bodies in Epilepsy”, Journal of Neurochemistry 121, núm. 1 (7 de febrero de 2012): 28-35. DOI: 10. 1111/j.1471-4159.2012.07670.x.

16. J. Moore y E. C. Westman, Keto Clarity (Las Vegas: Victory Belt Pu­blishing, 2014).

17. A. J. Brown, “Low-Carb Diets, Fasting and Euphoria: Is There a Link between Ketosis and γ-hydroxybutyrate (GHB)?”, Medical Hypotheses 68, núm. 2 (2007): 268-271. DOI: 10.1016/j.mehy.2006.07.043.

18. S. Bair, “Intermittent Fasting: Try This at Home for Brain Health”, Stanford Law School, https://law.stanford.edu/2015/01/09/lawandbios ciences-2015-01-09-intermittent-fasting-try-this-at-home-for-brain- health/, consultado el 23 de septiembre de 2018; B. Martin, M. P. Mattson y S. Maudsley, “Caloric Restriction and Intermittent Fasting: Two Potential Diets for Successful Brain Aging”, Ageing Research Reviews 5, núm. 3 (2006): 332-353. DOI: 10.1016/j.arr.2006.04.002.

19. S. Komanduri et al., “Prevalence and Risk Factors of Heart Failure in the USA: NHANES 2013-2014 Epidemiological Follow-up Study”, Journal of Community Hospital Internal Medicine Perspectives 7, núm. 1 (enero de 2017): 15-20. DOI: 10.1080/20009666.2016.1264696.

20. E. Renguet et al., “Erratum: The Regulation of Insulin-Stimulated Cardiac Glucose Transport via Protein Acetylation”, Frontiers in Cardiovascular Medicine 5 (12 de junio de 2018). DOI: 10.3389/fcvm.2018.00103.

21. Q. G. Karwi et al., “Loss of Metabolic Flexibility in the Failing Heart”, Frontiers in Cardiovascular Medicine 5 (2018). DOI: 10.3389/fcvm.20 18.00068.

22. R. J. Bing et al., “Metabolism of the Human Heart: II. Studies on Fat, Ketone and Amino Acid Metabolism”, American Journal of Medicine 16, núm. 4 (abril de 1954): 504-515. https://www.sciencedirect.com/science/article/pii/0002934354903654. DOI: 10.1016/0002-9343(54)90365-4.

23. P. Puchalska y P. Crawford, “Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics”, Cell Metabolism 25, núm. 2 (7 de febrero de 2017): 262-284. DOI: 10.1016/j.cmet.2016.12.022.

Capítulo 4

1. R. C. Shoemaker, Surviving Mold: Life in the Era of Dangerous Buildings (Baltimore: Otter Bay Books, 2010).

2. R. A. Lordo, K. T. Dinh y J. G. Schwemberger, “Semivolatile Organic Compounds in Adipose Tissue: Estimated Averages for the US Population and Selected Subpopulations”, American Journal of Public Health 86, núm. 9 (1996): 1253-1259. DOI: 10.2105/ajph.86.9.1253.

3. J. E. Orban et al., “Dioxins and Dibenzofurans in Adipose Tissue of the General US Population and Selected Subpopulations”, American Journal of Public Health 84, núm. 3 (1994): 439-445. DOI: 10.2105/ajph.84.3.439.

4. D. Main, “Glyphosate Now the Most-Used Agricultural Chemical Ever”, Newsweek, 19 de mayo de 2016, https://www.newsweek.com/glyphosate-now-most-used-agricultural-chemical-ever-422419.

5. K. A. Varady et al., “Alternate Day Fasting for Weight Loss in Normal Weight and Overweight Subjects: A Randomized Controlled Trial”, Nutrition Journal 12, núm. 1 (2013). DOI: 10.1186/1475-2891-12-146.

6. I. Ahmet et al., “Chronic Alternate-Day Fasting Results in Reduced Diastolic Compliance and Diminished Systolic Reserve in Rats”, Journal of Cardiac Failure 16, núm. 10 (octubre de 2016): 843-853. https://www.ncbi.nlm.nih.gov/pubmed/20932467.

Capítulo 5

1. A. M. Elsakka et al., “Management of Glioblastoma Multiforme in a Patient Treated with Ketogenic Metabolic Therapy and Modified Standard of Care: A 24-Month Follow-Up”, Frontiers in Nutrition 5, núm. 20 (29 de marzo de 2018). DOI: 10.3389/fnut.2018.00020.

Capítulo 6

1. K. Breivik et al., “Primary Sources of Selected POPs: Regional and Global Scale Emission Inventories”, Environmental Pollution 128, núms. 1-2 (2004): 3-16. DOI: 10.1016/j.envpol.2003.08.031.

2. A. Sjödin et al., “Polybrominated Diphenyl Ethers, Polychlorinated Biphenyls, and Persistent Pesticides in Serum from the National Health and Nutrition Examination Survey: 2003-2008”, Environmental Science & Technology 48, núm. 1 (2013): 753-760. DOI: 10.1021/es4037836.

3. D. G. Patterson Jr. et al., “Levels in the U.S. Population of Those Persistent Organic Pollutants (2003-2004) Included in the Stockholm Convention or in Other Long-Range Transboundary Air Pollution Agreements”, Environmental Science & Technology 43, núm. 4 (2009): 1211-1218. DOI: 10.1021/es801966w.

4. P. J. Landrigan, “Pesticides and Polychlorinated Biphenyls (PCBs): An Analysis of the Evidence that They Impair Children’s Neurobehavioral Development”, Molecular Genetics and Metabolism 73, núm. 1 (2001): 11-17. DOI: 10.1006/mgme.2001.3177.

5. E. Jackson et al., “Adipose Tissue as a Site of Toxin Accumulation”, Comprehensive Physiology 7, núm. 4 (2017): 1085-1135. DOI: 10.1002/cphy.c160038.

6. D. G. Patterson Jr. et al., “Levels in the U.S. Population of Those Persistent Organic Pollutants (2003-2004) Included in the Stockholm Convention or in Other Long-Range Transboundary Air Pollution Agreements”, 1211-1218.

7. Y. Y. Qin et al., “Persistent Organic Pollutants and Heavy Metals in Adipose Tissues of Patients with Uterine Leiomyomas and the Association of These Pollutants with Seafood Diet, BMI, and Age”, Environmental Science and Pollution Research 17, núm. 1 (27 de octubre de 2009): 229-240. https://link.springer.com/article/10.1007/s11356-009-0251-0, consultado el 19 de octubre de 2018.

8. V. Bornemann et al., “Intestinal Metabolism and Bioaccumulation of Sucralose in Adipose Tissue in the Rat”, Journal of Toxicology and Environmental Health, parte A 81, núm. 18 (2018): 913-923. DOI: 10.1080/ 15287394.2018.1502560.

9. M. Haranczyk et al., “On Enumeration of Congeners of Common Persistent Organic Pollutants”, Environmental Pollution 158, núm. 8 (2010): 2786-2789. DOI: 10.1016/j.envpol.2010.05.011.

10. Environmental Protection Agency, “Persistant Organic Pollutants: A Global Issue, A Global Response”, 2002, actualizado en diciembre de 2009. https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response, consultado el 6 de diciembre de 2018.

11. D. H. Lee et al., “A Strong Dose-Response Relation between Serum Concentrations of Persistent Organic Pollutants and Diabetes: Results from the National Health and Examination Survey 1999-2002”, Diabetes Care 29, núm. 7 (julio de 2006): 1638-1644. DOI: 10.2337/dc06-0543.

12. M. C. Petriello, B. Newsome y B. Hennig, “Influence of Nutrition in PCB-Induced Vascular Inflammation”, Environmental Science and Pollution Research 21, núm. 10 (2013): 6410-6418. DOI: 10.1007/s11356-013-1549-5.

13. J. Kumar et al., “Persistent Organic Pollutants and Inflammatory Markers in a Cross-Sectional Study of Elderly Swedish People: The PIVUS Cohort”, Environmental Health Perspectives 122, núm. 9 (2014): 977-983. DOI: 10.1289/ehp.1307613.

14. D. Costantini et al., “Oxidative Stress in Relation to Reproduction, Contaminants, Gender and Age in a Long-Lived Seabird”, Oecologia 175, núm. 4 (2014): 1107-1116. DOI: 10.1007/s00442-014-2975-x.

15. M. A. Hyman, “Environmental Toxins, Obesity, and Diabetes: An Emerging Risk Factor”, Alternative Therapies in Health and Medicine 16, núm. 2 (marzo/abril de 2010): 56-58. https://www.ncbi.nlm.nih.gov/pubmed/20232619.

16. S. E. Kahn, R. L. Hull y K. M. Utzschneider, “Mechanisms Linking Obesity to Insulin Resistance and Type 2 Diabetes”, Nature 444, núm. 7121 (2006): 840-846. DOI: 10.1038/nature05482.

17. D. H. Lee et al., “Low Dose Organochlorine Pesticides and Polychlorinated Biphenyls Predict Obesity, Dyslipidemia, and Insulin Resistance among People Free of Diabetes”, PLoS One 6, núm. 1 (2011). DOI: 10. 1371/journal.pone.0015977.

18. C. C. Kuo et al., “Environmental Chemicals and Type 2 Diabetes: An Updated Systematic Review of the Epidemiologic Evidence”, Current Diabetes Reports 13, núm. 6 (2013): 831-849. DOI: 10.1007/s11892-013-0432-6.

19. R. Rezg et al., “Bisphenol A and Human Chronic Diseases: Current Evidences, Possible Mechanisms, and Future Perspectives”, Environment International 64 (2014): 83-90. DOI: 10.1016/j.envint.2013.12.007.

20. H. K. Lee y Y. K. Pak, “Persistent Organic Pollutants, Mitochondrial Dysfunction, and Metabolic Syndrome”, Mitochondrial Dysfunction Caused by Drugs and Environmental Toxicants (2018): 691-707. DOI: 10. 1002/9781119329725.ch44.

21. K. Fry y M. C. Power, “Persistent Organic Pollutants and Mortality in the United States, NHANES 1999-2011”, Environmental Health 16, núm. 1 (2017). DOI: 10.1186/s12940-017-0313-6.

22. S. H. Safe, “Polychlorinated Biphenyls (PCBs): Environmental Impact, Biochemical and Toxic Responses, and Implications for Risk Assessment”, Critical Reviews in Toxicology 24, núm. 2 (1994): 87-149. DOI: 10.3109/10408449409049308.

23. Centers for Disease Control and Prevention, “Toxic Substances Portal – Polybrominated Diphenyl Ethers (PBDEs)”, 21 de enero de 2015, https://www.atsdr.cdc.gov/phs/phs.asp?id=1449&tid=183, consultado el 20 de octubre de 2018.

24. M. Frederiksen et al., “Human Internal and External Exposure to PBDEs – A Review of Levels and Sources”, International Journal of Hygiene and Environmental Health 212, núm. 2 (2009): 109-134. DOI: 10.1016/j.ijheh.2008.04.005.

25. C. Chevrier et al. “Childhood Exposure to Polybrominated Diphenyl Ethers and Neurodevelopment at Six Years of Age”, NeuroToxicology 54 (2016): 81-88. DOI: 10.1016/j.neuro.2016.03.002.

26. G. Ding et al., “Association between Prenatal Exposure to Polybrominated Diphenyl Ethers and Young Children’s Neurodevelopment in China”, Environmental Research 142 (2015): 104-111. DOI: 10.1016/j.envres.2015.06.008.

27. M. P. Vélez, T. E. Arbuckle y W. D. Fraser, “Maternal Exposure to Perfluorinated Chemicals and Reduced Fecundity: The MIREC Study”, Human Reproduction 30, núm. 3 (2015): 701-709. DOI: 10.1093/humrep/deu350.

28. Environmental Protection Agency, “Learn about Polychlorinated Biphenyls (PCBs)”, 13 de abril de 2018, https://www.epa.gov/pcbs/learn-about-polychlorinated-biphenyls-pcbs.

29. United Nations Environment Programme, “Stockholm Convention on Persistent Organic Pollutants (POPs) as Amended in 2009”, 2009.

30. M. Cave et al., “Polychlorinated Biphenyls, Lead, and Mercury Are Associated with Liver Disease in American Adults: NHANES 2003-2004”, Environmental Health Perspectives 118, núm. 12 (2010): 1735-1742. DOI: 10.1289/ehp.1002720.

31. P. A. Eubig et al., “Lead and PCBs as Risk Factors for Attention Deficit/ Hyperactivity Disorder”, Environmental Health Perspectives 118, núm. 12 (2010): 1654-1667. DOI: 10.1289/ehp.0901852.

32. S. A. Kim et al., “Associations of Organochlorine Pesticides and Polychlorinated Biphenyls with Total, Cardiovascular, and Cancer Mortality in Elders with Differing Fat Mass”, Environmental Research 138 (2015): 1-7. DOI: 10.1016/j.envres.2015.01.021.

33. Y. S. Lin et al., “Environmental Exposure to Dioxin-Like Compounds and the Mortality Risk in the U.S. Population”, International Journal of Hygiene and Environmental Health 215, núm. 6 (2012): 541-546. DOI: 10.1016/j.ijheh.2012.02.006.

34. K. Fry y M. C. Power, “Persistent Organic Pollutants and Mortality in the United States, NHANES 1999-2011”, Environmental Health 16, núm. 1 (2017): 105. DOI:10.1186/s12940-017-0313-6.

35. R. S. Pardini, “Polychlorinated Biphenyls (PCB): Effect on Mitochondrial Enzyme Systems”, Bulletin of Environmental Contamination and Toxicology 6, núm. 6 (1971): 539-545. DOI: 10.1007/bf01796863.

36. M. C. Petriello et al., “Modulation of Persistent Organic Pollutant Toxicity through Nutritional Intervention: Emerging Opportunities in Biomedicine and Environmental Remediation”, Science of the Total Environment 491-492 (2014): 11-16. DOI: 10.1016/j.scitotenv.2014.01.109.

37. M. C. Petriello, B. Newsome y B. Hennig, “Influence of Nutrition in PCB-Induced Vascular Inflammation”, Environmental Science and Pollution Research 21, núm. 10 (2013): 6410-6418. DOI: 10.1007/s11356-013-1549-5.

38. O. Krupkova, J. Handa, M. Hlavna et al., “The Natural Polyphenol Epigallocatechin Gallate Protects Intervertebral Disc Cells from Oxidative Stress”, Oxidative Medicine and Cellular Longevity (2016): 7031397. DOI: 10.1155/2016/7031397.

39. Centers for Disease Control and Prevention, “Arsenic Toxicity: Where Is Arsenic Found?”, https://www.atsdr.cdc.gov/csem/csem.asp?csem=1& po=5, consultado el 20 de octubre de 2018.

40. Centers for Disease Control and Prevention, “Toxic Substances Portal – Copper”, 21 de enero de 2015, https://www.atsdr.cdc.gov/phs/phs.asp?id=204&tid=37, consultado el 20 de octubre de 2018.

41. R. Chowdhury et al., “Environmental Toxic Metal Contaminants and Risk of Cardiovascular Disease: Systematic Review and Meta-analysis”, BMJ 2018. DOI: 10.1136/bmj.k3310.

42. National Center for Complementary and Integrative Health, “Questions and Answers: The NIH Trials of EDTA Chelation Therapy for Coronary Heart Disease”, 11 de octubre de 2016, https://nccih.nih.gov/health/chelation/TACT-questions; https://www.newsmax.com/Health/dr-crandall/chelation-heart-attack-diabetes-angioplasty/2018/02/09/id/842527/, consultado el 20 de octubre de 2018.

43. R. Walford, “Physiologic Changes in Humans Subjected to Severe, Selective Calorie Restriction for Two Years in Biosphere 2: Health, Aging, and Toxicological Perspectives”, Toxicological Sciences 52, núm. 2 (1999): 61-65. DOI: 10.1093/toxsci/52.2.61.

44. W. E. Dale, T. B. Gaines y W. J. Hayes, “Storage and Excretion of DDT in Starved Rats”, Toxicology and Applied Pharmacology 4, núm. 1 (1962): 89-106. DOI: 10.1016/0041-008x(62)90078-9.

45. G. M. Findlay y A. S. W. Defreitas, “DDT Movement from Adipocyte to Muscle Cell during Lipid Utilization”, Nature 229, núm. 5279 (1971): 63-65. DOI: 10.1038/229063a0.

46. D. C. Villeneuve, “The Effect of Food Restriction on the Redistribution of Hexachlorobenzene in the Rat”, Toxicology and Applied Pharmacology 31, núm. 2 (1975): 313-319. DOI: 10.1016/0041-008x(75)90167-2.

47. O. Hue et al., “Increased Plasma Levels of Toxic Pollutants Accompanying Weight Loss Induced by Hypocaloric Diet or by Bariatric Surge-ry”, Obesity Surgery 16, núm. 9 (2006): 1145-1154. DOI: 10.1381/ 096089206778392356.

48. M. J. Kim et al., “Fate and Complex Pathogenic Effects of Dioxins and Polychlorinated Biphenyls in Obese Subjects Before and After Drastic Weight Loss”, Environmental Health Perspectives 119, núm. 3 (2011): 377-383. DOI: 10.1289/ehp.1002848.

49. M. Rosenbaum y R. L. Leibel, “Adaptive Thermogenesis in Humans”, International Journal of Obesity 34, núm. 1 (octubre de 2010): 47-55. DOI: 10.1038/ijo.2010.184.

50. A. Tremblay et al., “Thermogenesis and Weight Loss in Obese Individuals: A Primary Association with Organochlorine Pollution”, International Journal of Obesity 28, núm. 7 (2004): 936-939. DOI: 10.1038/sj.ijo. 0802527.

51. C. Pelletier, P. Imbeault y A. Tremblay, “Energy Balance and Pollution by Organochlorines and Polychlorinated Biphenyls”, Obesity Reviews 4, núm. 1 (2003): 17-24. DOI: 10.1046/j.1467-789x.2003.00085.x.

52. J. Chevrier et al., “Body Weight Loss Increases Plasma and Adipose Tissue Concentrations of Potentially Toxic Pollutants in Obese Individuals”, International Journal of Obesity 24, núm. 10 (2000): 1272-1278. DOI: 10.1038 /sj.ijo.0801380.

53. C. Charlier, C. I. Desaive y G. Plomteux, “Human Exposure to Endocrine Disrupters: Consequences of Gastroplasty on Plasma Concentration of Toxic Pollutants”, International Journal of Obesity 26, núm. 11 (2002): 1465-1468. DOI: 10.1038/sj.ijo.0802144.

54. C. Pelletier et al., “Associations between Weight Loss-Induced Changes in Plasma Organochlorine Concentrations, Serum T3 Concentration, and Resting Metabolic Rate”, Toxicological Sciences 67, núm. 1 (2002): 46-51. DOI: 10.1093/toxsci/67.1.46.

55. P. Imbeault et al., “Weight Loss-induced Rise in Plasma Pollutant Is Asso­ciated with Reduced Skeletal Muscle Oxidative Capacity”, American Journal of Physiology-Endocrinology and Metabolism 282, núm. 3 (2002). DOI: 10.1152/ajpendo.00394.2001.

56. V. Mildaziene, “Multiple Effects of 2,2`,5,5`-Tetrachlorobiphenyl on Oxidative Phosphorylation in Rat Liver Mitochondria”, Toxicological Sciences 65, núm. 2 (2002): 220-227. DOI: 10.1093/toxsci/65.2.220.

57. R. L. Leibel, M. Rosenbaum y J. Hirsch, “Changes in Energy Expenditure Resulting from Altered Body Weight”, New England Journal of Medicine 332, núm. 10 (9 de marzo de 1995): 621-628. DOI: 10.1056/NEJM199503093321001.

58. E. Doucet et al., “Evidence for the Existence of Adaptive Thermogenesis During Weight Loss”, British Journal of Nutrition 85, núm. 6 (2001): 715. DOI: 10.1079/bjn2001348.

59. Y. Ohmiya y K. Nakai, “Effect of Starvation on Excretion, Distribution and Metabolism of DDT in Mice”, Tohoku Journal of Experimental Medicine 122, núm. 2 (1977): 143-153. DOI: 10.1620/tjem.122.143.

60. A. Aguilar, A. Borrell y T. Pastor, “Biological Factors Affecting Variability of Persistent Pollutant Levels in Cetaceans”, Journal of Cetacean Research and Management (enero de 1999): 83-116. https://www.researchgate.net/publication/235334517Biologicalfactorsaffectingvariabilityofpersistent pollutantlevelsincetaceans.

61. C. Lydersen et al., “Blood Is a Poor Substrate for Monitoring Pollution Burdens in Phocid Seals”, Science of The Total Environment 292, núm. 3 (2002): 193-203. DOI: 10.1016/s0048-9697(01)01121-4.

62. C. Debier et al., “Dynamics of PCB Transfer from Mother to Pup during Lactation in UK Grey Seals Halichoerus Grypus: Differences in PCB Profile between Compartments of Transfer and Changes during the Lactation Period”, Marine Ecology Progress Series 247 (2003): 249-256. DOI: 10.3354/meps247249.

63. C. Lydersen et al., “Blood Is a Poor Substrate for Monitoring Pollution Burdens in Phocid Seals”, Science of The Total Environment 292, núm. 3 (2002): 193-203. DOI: 10.1016/s0048-9697(01)01121-4.

64. C. Debier et al., “Mobilization of PCBs from Blubber to Blood in Northern Elephant Seals (Mirounga Angustirostris) during the Post-Weaning Fast”, Aquatic Toxicology 80, núm. 2 (2006): 149-157. DOI: 10.1016/ j.aquatox.2006.08.002.

65. M. G. Peterson et al., “Serum POP Concentrations Are Highly Predictive of Inner Blubber Concentrations at Two Extremes of Body Condition in Northern Elephant Seals”, Environmental Pollution 218 (2016): 651-663. DOI: 10.1016/j.envpol.2016.07.052.

66. J. Chevrier et al., “Body Weight Loss Increases Plasma and Adipose Ti­ssue Concentrations of Potentially Toxic Pollutants in Obese Individuals”, International Journal of Obesity 24, núm. 10 (2000): 1272-1278. DOI: 10.1038/sj.ijo.0801380.

67. P. Imbeault et al., “Weight Loss-induced Rise in Plasma Pollutant Is Asso­ciated with Reduced Skeletal Muscle Oxidative Capacity”, American Journal of Physiology-Endocrinology and Metabolism 282, núm. 3 (2002). DOI: 10.1152/ajpendo.00394.2001.

68. R. J. Jandacek et al., “Effects of Yo-Yo Diet, Caloric Restriction, and Olestra on Tissue Distribution of Hexachlorobenzene”, American Journal of Physiology-Gastrointestinal and Liver Physiology 288, núm. 2 (2005). DOI: 10.1152/ajpgi.00285.2004.

69. M. L. Kortelainin, “Hyperthermia Deaths in Finland in 1970-1986”, American Journal of Forensic Medicine and Pathology 12, núm. 2 (junio de 1991): 115-118. DOI: 10.1097/00000433-199106000-00006.

70. A. Kenttämies y K. Karkola, “Death in Sauna”, Journal of Forensic Science 53 (2008): 724-729. DOI: 10.1111/j.1556-4029.2008.00703.x.

Capítulo 7

1. K. Gabel et al., “Effects of 8-hour Time Restricted Feeding on Body Weight and Metabolic Disease Risk Factors in Obese Adults: A Pilot Study”, Nutrition and Healthy Aging 4, núm. 4 (2018): 345-353. DOI: 10.3233/nha-170036.

2. P. Puchalska y P. A. Crawford, “Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics”, Cell Metabolism 25, núm. 2 (2017): 262-284. DOI: 10.1016/j.cmet.2016.12.022.

3. J. S. Volek, T. Noakes y S. D. Phinney, “Rethinking Fat as a Fuel for Endurance Exercise”, European Journal of Sport Science 15, núm. 1 (2014): 13-20. DOI: 10.1080/17461391.2014.959564.

4. K. A. Varady y M. K. Hellerstein, “Do Calorie Restriction or Alternate-Day Fasting Regimens Modulate Adipose Tissue Physiology in a Way that Reduces Chronic Disease Risk?”, Nutrition Reviews 66, núm. 6 (junio de 2008): 333-342. DOI: 10.1111/j.1753-4887.2008.00041.x.

5. G. F. Cahill, “Fuel Metabolism in Starvation”, Annual Review of Nutrition 26, núm. 1 (2006): 1-22. DOI: 10.1146/annurev.nutr.26.061505.111258.

6. L. B. Gano, M. Patel y J. M. Rho, “Ketogenic Diets, Mitochondria, and Neurological Diseases”, Journal of Lipid Research 55, núm. 11 (2014): 2211-2228. DOI: 10.1194/jlr.r048975.

7. Y. Kashiwya, M. T. King y R. L. Veech, “Substrate Signaling by Insulin: A Ketone Bodies Ratio Mimics Insulin Action in Heart”, American Journal of Cardiology 80, núm. 3A (4 de agosto de 1997): 50A-64A. https://www.ncbi.nlm.nih.gov/pubmed/9293956.

8. H. A. Krebs y R. L. Veech, “Pyridine Nucleotide Interrelations In: The Energy Level and Metabolic Control in Mitochondria”, Adriatica Editrice 1969, 329-384.

9. W. Curtis et al., “Mitigation of Damage from Reactive Oxygen Species and Ionizing Radiation by Ketone Body Esters”, Oxford Medicine Online 2016. DOI: 10.1093/med/9780190497996.003.0027.

10. Y. Yang y A. A. Sauve, “NAD(+) Metabolism: Bioenergetics, Signaling and Manipulation for Therapy”, Biochimica Et Biophysica Acta 1864, núm. 12 (diciembre de 2016): 1787-1800. DOI: 10.1016/j.bbapap.2016. 06.014.

11. W. Ying, “NAD+/NADH and NADP+/NADPH in Cellular Functions and Cell Death: Regulation and Biological Consequences”, Antioxidants & Redox Signaling 10, núm. 2 (2008): 179-206. DOI: 10.1089/ars.2007. 1672.

12. J. P. Fessel y W. M. Oldham, “Pyridine Dinucleotides from Molecules to Man”, Antioxidants & Redox Signaling 28, núm. 3 (2018): 180-212. DOI: 10.1089/ars.2017.7120.

13. M. N. Harvie et al., “The Effect of Intermittent Energy and Carbohydrate Restriction v. Daily Energy Restriction on Weight Loss and Metabolic Disease Risk Markers in Overweight Women”, British Journal of Nutrition 110, núm. 8 (octubre de 2013): 1534-1547. DOI: 10.1017/S0007114513000792.

14. H. Arquin et al., “Short- and Long-Term Effects of Continuous versus Intermittent Restrictive Diet Approaches on Body Composition and the Metabolic Profile in Overweight and Obese Postmenopausal Women: A Pilot Study”, Menopause New York 19, núm. 8 (agosto de 2012): 870-876. DOI: 10.1097/gme.0b013e318250a287.

15. N. Halberg et al., “Effect of Intermittent Fasting and Refeeding on Insulin Action in Healthy Men”, Journal of Applied Physiology 99, núm. 6 (2005): 2128-2136. DOI: 10.1152/japplphysiol.00683.2005.

16. M. N. Harvie et al., “The Effects of Intermittent or Continuous Energy Restriction on Weight Loss and Metabolic Disease Risk Markers: A Randomized Trial in Young Overweight Women”, International Journal of Obesity 35, núm. 5 (mayo de 2011): 714-727. DOI: 10.1038/ijo.2010. 171.

17. V. Ziaee et al., “The Changes of Metabolic Profile and Weight During Ramadan Fasting”, Singapore Medical Journal 47, núm. 5 (mayo de 2006): 409-414. https://www.ncbi.nlm.nih.gov/pubmed/16645692.

18. M. A. Faris et al., “Intermittent Fasting during Ramadan Attenuates Proinflammatory Cytokines and Immune Cells in Healthy Subjects”, Nutritional Research 32, núm. 12 (diciembre de 2012): 947-955. DOI: 10.1016/j.nutres.2012.06.021.

19. J. B. Johnson et al., “Alternate Day Calorie Restriction Improves Clinical Findings and Reduces Markers of Oxidative Stress and Inflammation in Overweight Adults with Moderate Asthma”, Free Radical Biology & Medicine 42, núm. 5 (marzo de 2007): 665-674. DOI: 10.1016/j.freeradbiomed.2006.12.005.

20. K. K. Hoddy et al., “Meal Timing during Alternate Day Fasting: Impact on Body Weight and Cardiovascular Disease Risk in Obese Adults”, Obesity 22, núm. 12 (diciembre de 2014): 2524-2531. DOI: 10.1002/oby. 20909.

21. M. C. Klempel et al., “Intermittent Fasting Combined with Calorie Restriction Is Effective for Weight Loss and Cardio-Protection in Obese Women”, Nutrition Journal 11, núm. 1 (2012). DOI: 10.1186/1475-2891- 11-98.

22. B. D. Horne et al., “Relation of Routine, Periodic Fasting to Risk of Diabetes Mellitus, and Coronary Artery Disease in Patients Undergoing Coronary Angiography”, American Journal of Cardiology 109, núm. 11 (1º de junio de 2012): 1558-1562. DOI: 10.1016/j.amjcard.2012.01.379.

23. M. Boutant et al., “SIRT1 Gain of Function Does Not Mimic or Enhance the Adaptations to Intermittent Fasting”, Cell Reports 14, núm. 9 (8 de marzo de 2016): 2068-2075. DOI: 10.1016/j.celrep.2016.02.007.

24. K. A. Varady et al., “Alternate Day Fasting for Weight Loss in Normal Weight and Overweight Subjects: A Randomized Controlled Trial”, Nutrition Journal 12, núm. 1 (2013). DOI: 10.1186/1475-2891-12-146.

25. M. P. Wegman et al., “Practicality of Intermittent Fasting in Humans and Its Effect on Oxidative Stress and Genes Related to Aging and Metabolism”, Rejuvenation Research 18, núm. 2 (1º de abril de 2015): 162-172. DOI: 10.1089/rej.2014.1624.

26. T. Moro et al., “Effects of Eight Weeks of Time-restricted Feeding (16/8) on Basal Metabolism, Maximal Strength, Body Composition, Inflammation, and Cardiovascular Risk Factors in Resistance-Trained Males”, Journal of Translational Medicine 14, núm. 1 (2016). DOI: 10.1186/s12967-016-1044-0.

27. O. Carlson et al., “Impact of Reduced Meal Frequency Without Caloric Restriction on Glucose Regulation in Healthy, Normal Weight Middle-Aged Men and Women”, Metabolism 56, núm. 12 (diciembre de 2007): 1729-1734. DOI: 10.1016/j.metabol.2007.07.018.

28. K. S. Stote et al., “A Controlled Trial of Reduced Meal Frequency without Caloric Restriction in Healthy, Normal-Weight, Middle-Aged Adults”, American Journal of Clinical Nutrition 85, núm. 4 (abril de 2007): 981-988. DOI: 10.1093/ajcn/85.4.981.

29. M. C. Klempel et al., “Intermittent Fasting Combined with Calorie Restriction Is Effective for Weight Loss and Cardio-Protection in Obese Women”, Nutrition Journal 11, núm. 1 (2012). DOI: 10.1186/1475-2891-11-98.

30. T. Moro et al., “Effects of Eight Weeks of Time-restricted Feeding (16/8) on Basal Metabolism, Maximal Strength, Body Composition, Inflammation, and Cardiovascular Risk Factors in Resistance-Trained Males”, Journal of Translational Medicine 14, núm. 1 (2016). DOI: 10. 1186/s12967-016-1044-0.

31. G. Tinsley et al., “Time-Restricted Feeding in Young Men Performing Resistance Training: A Randomized Controlled Trial”, European Journal of Sport Science 17, núm. 2 (2016): 200-207. DOI: 10.1080/17461391.2016. 1223173.

32. E. C. Westman et al., “The Effect of a Low-Carbohydrate, Ketogenic Diet versus a Low-Glycemic Index Diet on Glycemic Control in Type 2 Diabetes Mellitus”, Nutrition and Metabolism 5, núm. 36 (19 de diciembre de 2008). DOI: 10.1186/1743-7075-5-36.

33. M. Lutski et al., “Insulin Resistance and Future Cognitive Performance and Cognitive Decline in Elderly Patients with Cardiovascular Disease”, Journal of Alzheimer’s Disease 57, núm. 2 (2017): 633-643. DOI: 10.3233/jad-161016.

34. C. W. Cheng et al., “Prolonged Fasting Reduces IGF-1/PKA to Promote Hematopoietic-Stem-Cell-Based Regeneration and Reverse Immunosu­ppression”, Cell Stem Cell 14, núm. 6 (2014): 810-823. DOI: 10.1016/j.stem.2014.04.014.

35. V. D. Longo y P. Fabrizio, “Chronological Aging in Saccharomyces Cerevisiae”, Subcellular Biochemistry 57 (2012): 101-121. DOI: 10.1007/978-94-007-2561-45.

36. W. S. J. Yancy et al., “A Low-Carbohydrate, Ketogenic Diet Versus a Low-Fat Diet to Treat Obesity and Hyperlipidemia: A Randomized, Controlled Trial”, Annals of Internal Medicine 140, núm. 10 (2004): 769-777. DOI: 10.1016/s0084-3954(07)70252-x.

37. M. V. Chakravarthy y F. W. Booth, “Eating, Exercise, and ‘Thrifty’ Genotypes: Connecting the Dots toward an Evolutionary Understanding of Modern Chronic Diseases”, Journal of Applied Physiology 96, núm. 1 (2004): 3-10. DOI: 10.1152/japplphysiol.00757.2003.

38. V. D. Longo y M. P. Mattson, “Fasting: Molecular Mechanisms and Clinical Applications”, Cell Metabolism 19, núm. 2 (4 de febrero de 2014): 181-192. DOI: 10.1016/j.cmet.2013.12.008.

39. C-W Cheng, V. Villani, R. Buono et al., “Fasting-mimicking Diet Promotes Ngn3-driven β-cell Regeneration to Reverse Diabetes”, Cell 168, núm. 5 (2017): 775-788. DOI: 10.1016/j.cell.2017.01.040.

40. J. Weisenberger, “Resistant Starch - This Type of Fiber Can Improve Weight Control and Insulin Sensitivity”, Today’s Dietitian 14, núm. 9 (septiembre de 2012): 22. https://www.todaysdietitian.com/newarchives/090112p22.shtml, consultado el 20 de octubre de 2018.

41. P. M. Smith et al., “The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis”, Science 341, núm. 6145 (2 de agosto de 2013): 569-573. http://science.sciencemag.org/content/ 341/6145/569, consultado el 20 de octubre de 2018.

42. M. T. Streppel et al., “Dietary Fiber and Blood Pressure: A Meta-analysis of Randomized Placebo-Controlled Trials”, Archives of Internal Medicine 165, núm. 2 (24 de enero de 2005): 150-156. DOI: 10.1001/archinte. 165.2.150.

43. WebMD, “Fiber Fights Hypertension?”, CBS News, 4 de marzo de 2005, https://www.cbsnews.com/news/fiber-fights-hypertension/, consultado el 20 de octubre de 2018.

44. V. Greenwood, Quanta Magazine, “How Bacteria May Help Regulate Blood Pressure”, Scientific American, 14 de diciembre de 2017, https://www.scientificamerican.com/article/how-bacteria-may-help-regulate-blood-pressure/, consultado el 20 de octubre de 2018.

45. E. B. Rimm et al., “Vegetable, Fruit, and Cereal Fiber Intake and Risk of Coronary Heart Disease Among Men”, JAMA 275, núm. 6 (1996): 447. DOI: 10.1001/jama.1996.03530300031036.

46. D. F. Birt et al., “Resistant Starch: Promise for Improving Human Health”, Advances in Nutrition 4, núm. 6 (noviembre de 2013), https://academic.oup.com/advances/article/4/6/587/4595564, consultado el 20 de octubre de 2018.

47. M. Oaklander, “Eat This Carb and You Won’t Gain Weight”, Time, 6 de mayo, 2016, http://time.com/4318201/carbohydrates-weight-loss-resistant-starch/, consultado el 20 de octubre de 2018.

48. B. P. Gargari et al., “Is There Any Place for Resistant Starch, as Alimentary Prebiotic, for Patients with Type 2 Diabetes?”, Complementary Therapies in Medicine 23, núm. 6 (2015): 810-815. DOI: 10.1016/j.ctim.2015.09.005.

49. S. S. Dronamraju et al., “Cell Kinetics and Gene Expression Changes in Colorectal Cancer Patients given Resistant Starch: A Randomised Controlled Trial”, Gut 58, núm. 3 (marzo de 2009): 413-420. DOI: 10.1136/gut.2008.162933.

50. R. Marion-Letellier, G. Savoye y S. Ghosh, “IBD: In Food We Trust”, Journal of Crohns and Colitis 10, núm. 11 (2016): 1351-1361. DOI: 10. 1093/ecco-jcc/jjw106.

51. American Chemical Society, “New Low-calorie Rice Could Help Cut Rising Obesity Rates”, https://www.acs.org/content/acs/en/pressroom/newsreleases/2015/march/new-low-calorie-rice-could-help-cut-rising-obesity-rates.html, consultado el 20 de octubre de 2018.

52. P. Burton y H. J. Lightowler, “The Impact of Freezing and Toasting on the Glycaemic Response of White Bread”, European Journal of Clinical Nutrition 62, núm. 5 (2007): 594-599. DOI: 10.1038/sj.ejcn.1602746.

Capítulo 8

1. C. Smith-Spangler et al., “Are Organic Foods Safer or Healthier Than Conventional Alternatives?: A Systematic Review”, Annals of Internal Medicine, 4 de septiembre de 2012, http://annals.org/aim/article-abstract/ 1355685/organic-foods-safer-healthier-than-conventional-alternatives-systematic-review.

2. M. Bara´nski et al., “Higher Antioxidant and Lower Cadmium Concentrations and Lower Incidence of Pesticide Residues in Organically Grown Crops: A Systematic Literature Review and Meta-analyses”, British Journal of Nutrition 112, núm. 5 (2014): 794-811. DOI: 10.1017/s0007114514001366.

3. Centers for Disease Control and Prevention, “Cadmium”, 3 de marzo de 2011, https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=15.

4. J. P. Reganold et al., “Fruit and Soil Quality of Organic and Conventional Strawberry Agroecosystems”, PLoS One, https://journals.plos.org/plosone/ article?id=10.1371/journal.pone.0012346.

5. M. J. Yousefzadeh et al., “Fisetin Is a Senotherapeutic that Extends Health and Lifespan”, EBioMedicine 36 (2018): 18-28. DOI: 10.1016/j.ebiom. 2018.09.015.

6. D. Srednicka-Tober et al., “Composition Differences between Organic and Conventional Meat: A Systematic Literature Review and Meta-analysis”, British Journal of Nutrition 115 (2016): 994-1011. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0007114515005073.

7. D. Srednicka-Tober et al., “Higher PUFA and N-3 PUFA, Conjugated Linoleic Acid, α-tocopherol and Iron, but Lower Iodine and Selenium Concentrations in Organic Milk: A Systematic Literature Review and Meta- and Redundancy Analyses”, British Journal of Nutrition 115 (2016): 1043-1060. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0007114516000349.

8. C. Long y T. Alterman, “Meet Real Free-Range Eggs - Real Food”, Mother Earth News, octubre/noviembre de 2007, https://www.motherearthnews.com/real-food/free-range-eggs-zmaz07onzgoe, consultado el 20 de octubre de 2018.

9. Environmental Working Group, “EWG’s 2018 Shopper’s Guide to Pesticides in Produce”, https://www.ewg.org/foodnews/, consultado el 20 de octubre de 2018.

10. A. Fischer et al., “Coenzyme Q Regulates the Expression of Essential Genes of the Pathogen- and Xenobiotic-Associated Defense Pathway in C. Elegans”, Journal of Clinical Biochemistry and Nutrition 57, núm. 3 (2015): 171-177. DOI: 10.3164/jcbn.15-46.

11. B. A. Daisley et al., “Microbiota-Mediated Modulation of Organophosphate Insecticide Toxicity by Species-Dependent Interactions with Lactobacilli in a Drosophila Melanogaster Insect Model”, Applied and Environmental Microbiology 84, núm. 9 (2018). DOI: 10.1128/aem.02820-17.

12. B. V. Deepthi et al., “Lactobacillus Plantarum MYS6 Ameliorates Fumonisin B1- Induced Hepatorenal Damage in Broilers”, Frontiers in Microbiology 8, (2017). DOI: 10.3389/fmicb.2017.02317.

13. J. Robbers y V. E. Tyler, Tyler’s Herbs of Choice: The Therapeutic Use of Phytomedicinals (Binghamton, NY: Hawthorne Press, 1999).

14. W. Knoss y F. Stolte, “Assessment Report on Gentiana Lutea L., Radix”, European Medicines Agency, 12 de noviembre de 2009, https://www.ema.europa.eu/documents/herbal-report/assessment-report-gentiana-lutea-l-radix-first-versionen.pdf.

15. S. W. Seo et al., “Taraxacum Officinale Protects Against Cholecystokinin-Induced Acute Pancreatitis in Rats”, World Journal of Gastroenterology 11, núm. 4 (28 de enero de 2005): 597-599. DOI: 10.3748/wjg.v11.i4.597.

16. C. M. Park, J. Y. Park y Y. S. Song, “Luteolin and Chicoric Acid, Two Major Constituents of Dandelion Leaf, Inhibit Nitric Oxide and Lipid Peroxide Formation in Lipopolysaccharide-Stimulated RAW 264.7 Cells”, Preventive Nutrition and Food Science 15, núm. 2 (2010): 92-97. DOI: 10.3746/jfn.2010.15.2.092.

17. Y. J. Koh et al., “Anti-Inflammatory Effect of Taraxacum Officinale Leaves on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells”, Journal of Medicinal Food 13, núm. 4 (2010): 870-878. DOI: 10.1089/jmf.2009.1249.

18. J. F. Cheng et al., “Discovery and Structure-Activity Relationship of Coumarin Derivatives as TNF-alpha Inhibitors”, Bioorganic & Medicinal Chemistry Letters 14, núm. 10 (17 de mayo de 2004): 2411-2415. DOI: 10.1016/s0960-894x(04)00355-5.

19. J. Shan et al., “Chlorogenic Acid Inhibits Lipopolysaccharide-induced Cyclooxygenase-2 Expression in RAW264.7 Cells through Suppressing NF-κB and JNK/AP-1 Activation”, International Immunopharmacology 9, núm. 9 (agosto de 2009): 1042-1048. DOI: 10.1016/j.intimp.2009.04.011.

20. S. Ammar et al., “Spasmolytic and Anti-Inflammatory Effects of Constituents from Hertia Cheirifolia”, Phytomedicine 16, núm. 12 (diciembre de 2009): 1156-1161. DOI: 10.1016/j.phymed.2009.03.012.

21. P. Apati et al., “In-vitro Effect of Flavonoids from Solidago Canadensis Extract on Glutathione S-transferase”, Journal of Pharmacy and Pharmacology 58, núm. 2 (febrero de 2006): 251-256. DOI: 10.1211/jpp.58.2. 0013.

22. K. M. Ashry et al., “Oxidative Stress and Immunotoxic Effects of Lead and Their Amelioration with Myrrh (Commiphora Molmol) Emulsion”, Food and Chemical Toxicology 48, núm. 1 (enero de 2010): 236-241. DOI: 10.1016/j.fct.2009.10.006.

23. M. W. Sears, “Chelation: Harnessing and Enhancing Heavy Metal Detoxification – A Review”, Scientific World Journal 2013 (18 de abril de 2013): 1-13. DOI: 10.1155/2013/219840.

24. J. Mikler et al., “Successful Treatment of Extreme Acute Lead Intoxication”, Toxicology and Industrial Health 25, núm. 2 (20 de mayo de 2009): 137-140. DOI: 10.1177/0748233709104759.

25. M. D. Aldridge, “Acute Iron Poisoning: What Every Pediatric Intensive Case Unit Nurse Should Know”, Dimensions of Critical Care Nursing 26, núm. 2 (2007): 43-48. DOI: 10.1097/00003465-200703000-00001.

26. B. T. Ly, S. Williams y R. Clark, “Mercuric Oxide Poisoning Treated with Whole-bowel Irrigation and Chelation Therapy”, Annals of Emergency Medicine 39, núm. 3 (marzo de 2002): 312-315. DOI: 10.1067/mem. 2002.119508.

27. R. Kumar y N. V. Majeti, “A Review of Chitin and Chitosan Applications”, Reactive and Functional Polymers 46, núm. 1 (noviembre de 2000): 1-27. https://www.sciencedirect.com/science/article/abs/pii/S13 81514800000389#!.

28. E. Guibal, “Interactions of Metal Ions with Chitosan-based Sorbents: A Review”, Separation and Purification Technology 38, núm. 1 (15 de julio de 2004): 43-74. DOI: 10.1016/j.seppur.2003.10.004.

29. A. J. Varma, S. V. Deshpande y J. F. Kennedy, “Metal Complexation by Chitosan and Its Derivatives: A Review”, Carbohydrate Polymers 55, núm. 1 (1º de enero de 2004): 77-93. DOI: 10.1016/j.carbpol.2003.08.005.

30. L. Zhang, Y. Zeng y Z. Cheng, “Removal of Heavy Metal Ions Using Chitosan and Modified Chitosan: A Review”, Journal of Molecular Liquids 214 (febrero de 2016): 175-191. https://www.sciencedirect.com/science/article/pii /S0167732215308801.

31. J. Wang y C. Chen, “Chitosan-Based Biosorbents: Modification and Application for Biosorption of Heavy Metals and Radionuclides”, Bioresource Technology 160, (mayo de 2014): 129-141. DOI: 10.1016/j.biortech. 2013.12.110.

32. T. Fang et al., “Modified Citrus Pectin Inhibited Bladder Tumor Growth through Downregulation of Galectin-3”, Acta Pharmacologica Sinica (16 de mayo de 2018). DOI: 10.1038/s41401-018-0004-z.

33. Z. Y. Zhao et al., “The Role of Modified Citrus Pectin as an Effective Chelator of Lead in Children Hospitalized with Toxic Lead Levels”, Alternative Therapies in Health and Medicine 14, núm. 4 (julio/agosto de 2008): 34-38. https://www.ncbi.nlm.nih.gov/pubmed/18616067.

34. I. Eliaz, E. Weil y B. Wilk, “Integrative Medicine and the Role of Modified Citrus Pectin/Alginates in Heavy MetIntegrative Medicine and the Role of Modified Citrus Pectin/Alginates in Heavy Metal Chelation and Detoxification – Five Case Reports”, Complementary Medicine Research 14, núm. 6 (diciembre de 2007): 358-364. DOI: 10.1159/000109829.

35. T. Uchikawa et al., “Chlorella Suppresses Methylmercury Transfer to the Fetus in Pregnant Mice”, Journal of Toxicological Sciences 36, núm. 5 (octubre de 2011): 675-680. DOI: 10.2131/jts.36.675.

36. J. Mercola y D. Klinghardt, “Mercury Toxicity and Systemic Elimination Agents”, Journal of Nutritional & Environmental Medicine 11, núm. 1 (2001): 53-62. DOI: 10.1080/13590840020030267.

37. O. R. Ajuwon, O. O. Oguntibeju y J. Lucasta Marnewick, “Amelioration of Lipopolysaccharide-Induced Liver Injury by Aqueous Rooibos (Aspalathus Linearis) Extract via Inhibition of Pro-Inflammatory Cytokines and Oxidative Stress”, BMC Complementary and Alternative Medicine 14, núm. 1 (13 de octubre de 2014). DOI: 10.1186/1472-6882-14-392.

38. Q. Liu et al., “Effects of Dandelion Extract on the Proliferation of Rat Skeletal Muscle Cells and the Inhibition of a Lipopolysaccharide-Induced Inflammatory Reaction”, Chinese Medical Journal 131, núm. 14 (20 de julio de 2018): 1724-1731. DOI: 10.4103/0366-6999.235878.

39. M. W. Ebada, “Essential Oils of Green Cumin and Chamomile Partially Protect against Acute Acetaminophen Hepatotoxicity in Rats”, Anais Da Academia Brasileira De Ciências 90, núm. 2, supl. 1 (25 de junio de 2018): 2347-2358. DOI: 10.1590/0001-3765201820170825.

40. M. Ogata et al., “Supplemental Psyllium Fibre Regulates the Intestinal Barrier and Inflammation in Normal and Colitic Mice”, British Journal of Nutrition 118, núm. 9 (noviembre de 2017): 661-672. DOI: 10.1017/s0007114517002586.

Capítulo 9

1. S. L. McDonnell et al., “Serum 25-Hydroxyvitamin D Concentrations ≥40 Ng/ml Are Associated with 65% Lower Cancer Risk: Pooled Analysis of Randomized Trial and Prospective Cohort Study”, PLoS One 11, núm. 4 (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822815/, consultado el 20 de octubre de 2018.

2. M. Garlapow, “Higher Vitamin D Levels Lower Risk of Cancer in Women”, OncologyNurseAdvisor, 22 de abril de 2016, http://www.oncologynurseadvisor.com/colorectal-cancer/vitamin-d-and-cancer-higher-levels-lower-risk-in-women/article/491569/, consultado el 20 de octubre de 2018.

3. University of California, San Diego, “Greater Levels of Vitamin D Associated with Decreasing Risk of Breast Cancer”, ScienceDaily, 15 de junio de 2018, https://www.sciencedaily.com/releases/2018/06/180615154523.htm, consultado el 20 de octubre de 2018.

4. “Game Changer of the Year: Carole Baggerly”, Mercola.com, https://articles.mercola.com/sites/articles/archive/2018/08/07/game-changer-of-the-year-carole-baggerly.aspx, consultado el 20 de octubre de 2018.

5. “Lower Disease Incidence with Vitamin D levels 40-60 ng/ml”, Grass­rootsHealth, https://grassrootshealth.net/project/general-health/, consultado el 20 de octubre de 2018.

6. C. F. Garland et al., “Vitamin D Supplement Doses and Serum 25-hydroxyvitamin D in the Range Associated with Cancer Prevention”, Anticancer Research 31, núm. 2 (febrero de 2011): 607-611, https://www.ncbi.nlm.nih.gov/pubmed/21378345.

7. “Foods Highest in Vitamin D”, SELF Nutrition Data, http://nutritiondata.self.com/foods-000102000000000000000.html, consultado el 20 de octubre de 2018.

8. J. J. DiNicolantonio, J. H. O’Keefe y W. Wilson, “Subclinical Magnesium Deficiency: A Principal Driver of Cardiovascular Disease and a Public Health Crisis”, Open Heart 5, núm. 1 (2018). DOI: 10.1136/openhrt-2017-000668corr1.

9. Y. H. Ko et al., “Chemical Mechanism of ATP Synthase”, Journal of Biological Chemistry 274, núm. 41 (1999): 28853-28856. DOI: 10.1074/jbc. 274.41.28853.

10. A. S. Mildvan, “Role of Magnesium and Other Divalent Cations in ATP-Utilizing Enzymes”, Magnesium 6, núm. 1 (1987): 28-33. https://www.ncbi.nlm.nih.gov/pubmed/3029516.

11. J. Wang et al., “Dietary Magnesium Intake Improves Insulin Resistance among Non-Diabetic Individuals with Metabolic Syndrome Participating in a Dietary Trial”, Nutrients 5, núm. 10 (2013): 3910-3919. DOI: 10.3390/nu5103910.

12. K. Maeshima et al., “A Transient Rise in Free Mg2+ Ions Released from ATP-Mg Hydrolysis Contributes to Mitotic Chromosome Condensation”, Current Biology 28, núm. 3 (2018). DOI: 10.1016/j.cub.2017. 12.035.

13. A. A. Zheltova et al., “Magnesium Deficiency and Oxidative Stress: An Update”, BioMedicine 6, núm. 4 (2016). DOI: 10.7603/s40681-016-0020-6.

14. USDA National Nutrient Database for Standard Reference Release 28, 10 de noviembre de 2015, https://ods.od.nih.gov/pubs/usdandb/Magnesium-Content.pdf.

15. S. Johnson, “The Multifaceted and Widespread Pathology of Magnesium Deficiency”, Medical Hypotheses 56, núm. 2 (2001): 163-170. DOI: 10. 1054/mehy.2000.1133.

16. NIH Office of Dietary Supplements, “Magnesium”, https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/.

17. J. J. DiNicolantonio, J. H. O’Keefe y W. Wilson, “Subclinical Magnesium Deficiency: A Principal Driver of Cardiovascular Disease and a Public Health Crisis”, Open Heart 5, núm. 1 (2018). DOI: 10.1136/openhrt- 2017-000668corr1.

18. A. M. Uwitonze y M. S. Razzaque, “Role of Magnesium in Vitamin D Activation and Function”, Journal of the American Osteopathic Association 118, núm. 3 (2018): 181. DOI: 10.7556/jaoa.2018.037.

19. American Osteopathic Association, “Researchers Find Low Magnesium Levels Make Vitamin D Ineffective”, EurekAlert!, https://www.eurekalert.org/pub_releases/2018-02/aoa-rfl022318.php.

20. Idem.

21. X. Deng et al., “Magnesium, Vitamin D Status and Mortality: Results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III”, BMC Medicine 11, núm. 1 (2013). DOI: 10.1186/1741-7015-11-187.

22. W. S. Harris et al., “Erythrocyte Long-Chain Omega-3 Fatty Acid Levels Are Inversely Associated with Mortality and with Incident Cardiovascular Disease: The Framingham Heart Study”, Journal of Clinical Lipidology 12, núm. 3 (2018). DOI: 10.1016/j.jacl.2018.02.010.

23. S. M. Ulven et al., “Metabolic Effects of Krill Oil Are Essentially Similar to Those of Fish Oil but at Lower Dose of EPA and DHA, in Healthy Volunteers”, Lipids 46, núm. 1 (2010): 37-46. DOI: 10.1007/s11745-010-3490-4.

24. Mayo Clinic, “Prediabetes”, 2 de agosto de 2017, https://www.mayoclinic.org/diseases-conditions/prediabetes/symptoms-causes/syc-20355278, consultado el 20 de octubre de 2018.

25. “LCHF The Genius of Dr. Joseph R. Kraft - Exposing the True Extent of Diabetes”, The Fat Emperor, http://www.thefatemperor.com/blog/2015/5/10/lchf-the-genius-of-dr-joseph-r-kraft-exposing-the-true-extent-of-diabetes, consultado el 20 de octubre de 2018.

26. F. S. Facchini, “Near-Iron Deficiency-Induced Remission of Gouty Arthritis”, Rheumatology 42, núm. 12 (2003): 1550-1555. DOI: 10.1093/rheumatology/keg402.

27. Iron Disorders Institute, http://www.irondisorders.org/, consultado el 20 de octubre de 2018.

28. J. Daru et al., “Serum Ferritin Thresholds for the Diagnosis of Iron Deficiency in Pregnancy: A Systematic Review”, Transfusion Medicine 27, núm. 3 (2017): 167-174. DOI: 10.1111/tme.12408.

29. G. Koenig y S. Seneff, “Gamma-Glutamyltransferase: A Predictive Biomarker of Cellular Antioxidant Inadequacy and Disease Risk”, Disease Markers 2015, (2015): 1-18. DOI: 10.1155/2015/818570.

30. “What Is a Hs-CRP Test, and Do You Need One?”, MedBroadcast.com, https://www.medbroadcast.com/channel/cholesterol/testing-testing/what-is-a-hs-crp-test-and-do-you-need-one, consultado el 20 de octubre de 2018.

31. J. L. Funk et al., “Efficacy and Mechanism of Action of Turmeric Supplements in the Treatment of Experimental Arthritis”, Arthritis & Rheumatism 54, núm. 11 (2006): 3452-3464. DOI: 10.1002/art.22180.

32. J. Younger, L. Parkitny y D. McLain, “The Use of Low-Dose Naltrexone (LDN) as a Novel Anti-Inflammatory Treatment for Chronic Pain”, Clinical Rheumatology 33, núm. 4 (2014): 451-459. DOI: 10.1007/s10067-014-2517-2.

33. “CLIA Program and HIPAA Privacy Rule; Patients’ Access to Test Reports”, Federal Register, 6 de febrero de 2014, https://www.federalregister.gov/documents/2014/02/06/2014-02280/clia-program-and-hipaa-privacy-rule-patients-access-to-test-reports, consultado el 20 de octubre de 2018.