Log In
Or create an account ->
Imperial Library
Home
About
News
Upload
Forum
Help
Login/SignUp
Index
Cover
Table of Contents
Title
BENTHAM SCIENCE PUBLISHERS LTD.
End User License Agreement (for non-institutional, personal use)
Usage Rules:
Disclaimer:
Limitation of Liability:
General:
PREFACE
ACKNOWLEDGEMENTS
Conflict of Interest
Consent for Publication
Pareto-Optimal Front Determination
Abstract
1.1. Introduction
1.1.1. Heuristic and Metaheuristic Algorithm
1.1.2. History of Metaheuristics
1.1.3. Metaheuristic Algorithms and Applications
1.1.4. Optimum Design of Framed Structures: A Review of Literature
1.2. ELEMENT OF STATIC MULTI-OBJECTIVE PROGRAMMING
1.2.1. Problem Formulation
1.2.2. Concept of Dominance
1.2.3. Pareto-Optimality
1.3. Pareto-Optimal Front
1.3.1. Non-Dominated Solution
1.3.2. Analytical Pareto-Optimal Front
1.3.3. Near Pareto-Optimal Front
1.3.3.1. Pareto Ranking
1.3.3.2. Extended Pareto Ranking Application
1.3.3.3. Application to an Engineering Problem
1.3.3.4. Near Pareto-Optimal Front Approximation
1.3.4. Shape of a Pareto-Optimal Front
1.3.4.1. The Impact of Minimizing or Maximizing each Objective
1.3.4.2. The Impact Conflicting or Non-conflicting Objectives
1.4. Selection Procedures of Algorithms
1.4.1. Elitist Pareto Criteria
1.4.2. Non-Pareto Criteria
1.4.3. Bi-criterion Evolution
1.4.4. Other Concepts of Dominance
REFERENCES
Metaheuristic Optimization Algorithms
Abstract
2.1. Introduction
2.2. Simulated Annealing Algorithm
2.2.1. Annealing Principle and Description
2.2.2. Problem Formulation
2.2.3. Algorithm Description
2.2.3.1. Acceptance Probability
2.2.3.2. Algorithm
2.2.3.3. Different Cooling Schedules
2.2.3.4. Penalty Function Approach
2.3. Multi-Objective Simulated Annealing
2.3.1. MOSA Algorithm
2.3.2. Test Problems
REFERENCES
Evolutionary Strategy Algorithms
Abstract
3.1. Introduction
3.2. Principles and Operators
3.2.1. Algorithm for Solving Optimization Problems
3.2.2. Binary and Real-Number Encoding
3.2.3. Genetic Operators
3.3. GA-Based Mathematica® Notebook
3.4. Single-Objective Optimization
3.4.1. SciLab Package for Genetic Algorithm
3.4.2. GA-Based Software Package: GENOCOP III
REFERENCES
Genetic Search Algorithms
Abstract
4.1. Introduction
4.2. Niched Pareto Genetic Algorithms (NPGA)
4.3. Non-Dominated Sorting Genetic Algorithm
4.4. Multi-Objective Optimization Test Problems
4.4.1. Unconstrained Optimization Problems
4.4.1.1. Kursawe's Test Function using SciLab
4.4.1.2. UF1 Test Function using MOEA Framework
4.4.1.3. Viennet’s Test Function with SciLab
4.4.2. Constrained Optimization Problem
REFERENCES
Evolution Strategy Algorithms
Abstract
5.1. Introduction
5.2. Differential Evolution Strategy
5.2.1. Principles and Algorithm
5.2.2. DE Operators
5.2.2.1. Mutation Operators
5.2.2.2. Crossover Operators
5.2.2.3. Selection Operators
5.3. DE Algorithm for Single-Objective Optimization Problems
5.4. Multi-Objective DE Algorithm
5.4.1. Diversity-Promoting
5.4.2. Performing Elitism
REFERENCES
Swarm Intelligence and Co-Evolutionary Algorithms
Abstract
6.1. Introduction
6.2. Particle Swarm Optimization
6.3. Cooperative Co-Evolutionary Genetic Algorithm
6.4. Competitive Predator-Prey Optimization Model
6.4.1. Principle of PP Algorithm
6.4.2. PP Algorithm
6.4.3. Illustrative Problems
REFERENCES
Decomposition-Based and Hybrid Evolutionary Algorithms
Abstract
7.1. Introduction
7.2. Decomposition-Based Algorithm
7.2.1. Scalar Decomposition Principle
7.2.1.1. Weighted Sum Approach
7.2.1.2. Tchebycheff Approach
7.2.1.3. Weighted Vector Generation Techniques
7.2.2. Decomposition-Based MOEA Algorithm
7.2.3. MOEA Framework Software Package
7.3. Hybrid Evolutionary Algorithms
7.3.1. Hybridization under Lamarckian Strategy
7.3.2. Two-Stage Hybrid Search Method
7.3.3. Multi-Objective Genetic Local Search Algorithm
7.3.4. Archive-Based Hybrid Scatter Search (AbYSS)
7.3.4.1. Description and Main Features
7.3.4.2. Scatter Search Template
7.3.4.3. jMetal Implementation
REFERENCES
Many-Objective Optimization and Parallel Computation
Abstract
8.1. Introduction
8.2. Many-Objective Optimization
8.2.1. Dominance Extensions for MaOPs
8.2.2. Efficient Optimizers for MaOPs
8.2.2.1. Hypervolume-Based Algorithm
8.2.2.2. Vector Angle-Based Algorithm
8.2.2.3. Reference Point-Based Evolutionary Algorithm
8.2.2.4. Preference-Based Evolutionary Algorithm
8.2.3. Test Problem Suites for MaOPs
8.2.4. A Matlab Platform for MaOPs
8.2.5. Test Problem DTLZ#2 with Many Objectives
8.2.5.1. Formulation of Test Problem DTLZ#2
8.2.5.2. Implementation of a Pseudo NSGA-III Algorithm
8.2.5.3. Parallel Coordinate Plots for DTLZ#2
8.3. Parallel Computation of Metaheuristic Algorithms
8.3.1. Parallelization Strategies
8.3.2. Parallel Designs
8.3.3. Parallel Metaheuristic Algorithms and Applications
REFERENCES
Design of Test Problems
Abstract
9.1. Introduction
9.2. Key Characteristics of Test Functions
9.2.1. Major Complexities
9.2.2. Generating Methods
9.2.3. Test Suites
9.3. Analytical Pareto-Optimal Fronts
9.4. Multi-Objective Optimization with Mathematica®
9.4.1. Interactive Mathematica® Demonstration
9.4.2. Pareto-Optimal Solution
9.4.3. Resolution Process
REFERENCES
Fifty Collected Test Functions
Abstract
10.1. Introduction
10.2. All Fifty Test Problems
10.2.1. Problem Description
10.2.2. Approximated Pareto Fronts Using NSGA-II
10.2.3. Mathematical Problem Formulation
10.3. Selected Test Problems
REFERENCES
List of Abbreviations
List of Journal Abbreviations in the References
List of Symbols
← Prev
Back
Next →
← Prev
Back
Next →