Log In
Or create an account -> 
Imperial Library
  • Home
  • About
  • News
  • Upload
  • Forum
  • Help
  • Login/SignUp

Index
Cover Half Title Page Series Page Title Page Copyright Page Contents Authors Acknowledgments Preface How This Book Came to Be Suggested Curricula Guided Tour of the Chapters Learning Features List of Abbreviations Chapter 1 Introduction and Overview
1.1 Polarized Light 1.2 Polarization States and the Poincaré Sphere 1.3 Polarization Elements and Polarization Properties 1.4 Polarimetry and Ellipsometry 1.5 Anisotropic Materials 1.6 Typical Polarization Problems in Optical Systems
1.6.1 Angle Dependence of Polarizers 1.6.2 Wavelength and Angle Dependence of Retarders 1.6.3 Stress Birefringence in Lenses 1.6.4 Liquid Crystal Displays and Projectors
1.7 Optical Design
1.7.1 Polarization Ray Tracing 1.7.2 Polarization Aberrations of Lenses 1.7.3 High Numerical Aperture Wavefronts
1.8 Comment on Historical Treatments 1.9 Reference Books on Polarized Light 1.10 Problem Sets References
Chapter 2 Polarized Light
2.1 The Description of Polarized Light 2.2 The Polarization Vector 2.3 Properties of the Polarization Vector 2.4 Propagation in Isotropic Media 2.5 Magnetic Field, Flux, and Polarized Flux 2.6 Jones Vectors 2.7 Evolution of Overall Phase 2.8 Rotation of Jones Vectors 2.9 Linearly Polarized Light 2.10 Circularly Polarized Light 2.11 Elliptically Polarized Light 2.12 Orthogonal Jones Vectors 2.13 Change of Basis 2.14 Addition of Jones Vectors 2.15 Polarized Flux Components 2.16 Converting Polarization Vectors into Jones Vectors 2.17 Decreasing Phase Sign Convention 2.18 Increasing Phase Sign Convention 2.19 Polarization State of Sources
2.20 Problem Sets
References
Chapter 3 Stokes Parameters and the Poincaré Sphere
3.1 The Description of Polychromatic Light 3.2 Phenomenological Definition of the Stokes Parameters 3.3 Unpolarized Light 3.4 Partially Polarized Light and the Degree of Polarization 3.5 Spectral Bandwidth 3.6 Rotation of the Polarization Ellipse 3.7 Linearly Polarized Stokes Parameters 3.8 Elliptical Polarization Parameters 3.9 Orthogonal Polarization States 3.10 Stokes Parameter and Jones Vector Sign Conventions 3.11 Polarized Fluxes and Conversions between Stokes Parameters and Jones Vectors 3.12 The Stokes Parameters’ Non-Orthogonal Coordinate System 3.13 The Poincaré Sphere 3.14 Flat Mappings of the Poincaré Sphere 3.15 Summary and Conclusion 3.16 Problem Sets References
Chapter 4 Interference of Polarized Light
4.1 Introduction 4.2 Combining Light Waves 4.3 Interferometers 4.4 Interference of Nearly Parallel Monochromatic Plane Waves 4.5 Interference of Plane Waves at Large Angles 4.6 Polarization Considerations in Holography 4.7 The Addition of Polarized Beams
4.7.1 Addition of Polarized Light of Two Different Frequencies 4.7.2 Addition of Polychromatic Beams 4.7.3 A Gaussian Wave Packet Example
4.8 Conclusion 4.9 Problem Sets References
Chapter 5 Jones Matrices and Polarization Properties
5.1 Introduction 5.2 Dichroic and Birefringent Materials 5.3 Diattenuation and Retardance
5.3.1 Diattenuation 5.3.2 Retardance
5.4 Jones Matrices
5.4.1 Eigenpolarizations 5.4.2 Jones Matrix Notation 5.4.3 Rotation of Jones Matrices
5.5 Polarizer and Diattenuator Jones Matrices
5.5.1 Polarizer Jones Matrices 5.5.2 Linear Diattenuator Jones Matrices
5.6 Retarder Jones Matrices
5.6.1 Linear Retarder Jones Matrices 5.6.2 Circular Retarder Jones Matrices 5.6.3 Vortex Retarders
5.7 General Diattenuators and Retarders
5.7.1 Linear Diattenuators 5.7.2 Elliptical Diattenuators 5.7.3 Elliptical Retarders
5.8 Non-Polarizing Jones Matrices for Amplitude and Phase Change 5.9 Matrix Properties of Jones Matrices
5.9.1 Hermitian Matrices: Diattenuation 5.9.2 Unitary Matrices and Unitary Transformations: Retarder 5.9.3 Polar Decomposition: Separating Retardance from Diattenuation
5.10 Increasing Phase Sign Convention 5.11 Conclusion 5.12 Problem Sets References
Chapter 6 Mueller Matrices
6.1 Introduction 6.2 The Mueller Matrix 6.3 Sequences of Polarization Elements 6.4 Non-Polarizing Mueller Matrices 6.5 Rotating Polarization Elements about the Light Direction 6.6 Retarder Mueller Matrices 6.7 Polarizer and Diattenuator Mueller Matrices
6.7.1 Basic Polarizers 6.7.2 Transmittance and Diattenuation 6.7.3 Polarizance 6.7.4 Diattenuators
6.8 Poincaré Sphere Operations
6.8.1 The Operation of Retarders on the Poincaré Sphere 6.8.2 The Operation of a Rotating Linear Retarder 6.8.3 The Operation of Polarizers and Diattenuators 6.8.4 Indicating Polarization Properties
6.9 Weak Polarization Elements 6.10 Non-Depolarizing Mueller Matrices 6.11 Depolarization
6.11.1 The Depolarization Index and the Average Degree of Polarization 6.11.2 Degree of Polarization Surfaces and Maps 6.11.3 Testing for Physically Realizable Mueller Matrices 6.11.4 Weak Depolarizing Elements 6.11.5 The Addition of Mueller Matrices
6.12 Relating Jones and Mueller Matrices
6.12.1 Transforming Jones Matrices into Mueller Matrices Using Tensor Product 6.12.2 Conversion of Jones Matrices to Mueller Matrices Using Pauli Matrices 6.12.3 Transforming Mueller Matrices into Jones Matrices
6.13 Ray Tracing with Mueller Matrices
6.13.1 Mueller Matrices for Refraction 6.13.2 Mueller Matrices for Reflection
6.14 The Origins of the Mueller Matrix 6.15 Problem Sets References
Chapter 7 Polarimetry
7.1 Introduction 7.2 What Does the Polarimeter See? 7.3 Polarimeters
7.3.1 Light-Measuring Polarimeters 7.3.2 Sample-Measuring Polarimeters 7.3.3 Complete and Incomplete Polarimeters 7.3.4 Polarization Generators and Analyzers
7.4 Mathematics of Polarimetric Measurement and Data Reduction
7.4.1 Stokes Polarimetry 7.4.2 Measuring Mueller Matrix Elements 7.4.3 Mueller Data Reduction Matrix 7.4.4 Null Space and the Pseudoinverse
7.5 Classes of Polarimeters
7.5.1 Time-Sequential Polarimeters 7.5.2 Modulated Polarimeters 7.5.3 Division of Amplitude 7.5.4 Division of Aperture 7.5.5 Imaging Polarimeters
7.6 Stokes Polarimeter Configurations
7.6.1 Simultaneous Polarimetric Measurement
7.6.1.1 Division-of-Aperture Polarimetry 7.6.1.2 Division-of-Focal-Plane Polarimetry 7.6.1.3 Division-of-Amplitude Polarimetry
7.6.2 Rotating Element Polarimetry
7.6.2.1 Rotating Analyzer Polarimeters 7.6.2.2 Rotating Analyzer Plus Fixed Analyzer Polarimeter 7.6.2.3 Rotating Retarder and Fixed Analyzer Polarimeters
7.6.3 Variable Retarder and Fixed Polarizer Polarimeter 7.6.4 Photoelastic Modulator Polarimeters 7.6.5 The MSPI and MAIA Imaging Polarimeters 7.6.6 Example Atmospheric Polarization Images
7.7 Sample-Measuring Polarimeters
7.7.1 Polariscopes
7.7.1.1 Linear Polariscope 7.7.1.2 Circular Polariscope 7.7.1.3 Interference Colors 7.7.1.4 Polariscope with Tint Plate 7.7.1.5 Conoscope
7.7.2 Mueller Polarimetry Configurations
7.7.2.1 Dual Rotating Retarder Polarimeter 7.7.2.2 Polarimetry Near Retroreflection
7.8 Interpreting Mueller Matrix Images 7.9 Calibrating Polarimeters 7.10 Artifacts in Polarimetric Images
7.10.1 Pixel Misalignment
7.11 Optimizing Polarimeters 7.12 Problem Sets Acknowledgments References
Chapter 8 Fresnel Equations
8.1 Introduction 8.2 Propagation of Light
8.2.1 Plane Waves and Rays 8.2.2 Plane of Incidence 8.2.3 Homogeneous and Isotropic Interfaces 8.2.4 Light Propagation in Media
8.3 Fresnel Equations
8.3.1 s- and p-Polarization Components 8.3.2 Amplitude Coefficients 8.3.3 The Fresnel Equations 8.3.4 Intensity Coefficients 8.3.5 Normal Incidence 8.3.6 Brewster’s Angle 8.3.7 Critical Angle 8.3.8 Intensity and Phase Change with Incident Angle 8.3.9 Jones Matrices with Fresnel Coefficients
8.4 Fresnel Refraction and Reflection
8.4.1 Dielectric Refraction 8.4.2 External Reflection 8.4.3 Internal Reflection 8.4.4 Metal Reflection
8.4.4.1 Normal Incidence Reflectance 8.4.4.2 Retardance and Diattenuation of Metal at Non-Normal Incidence
8.5 Approximate Representations of Fresnel Coefficients
8.5.1 Taylor Series for the Fresnel Coefficients
8.6 Conclusion 8.7 Problem Sets References
Chapter 9 Polarization Ray Tracing Calculus
9.1 Definition of Polarization Ray Tracing Matrix, P 9.2 Formalism of Polarization Ray Tracing Matrix Using Orthogonal Transformation 9.3 Retarder Polarization Ray Tracing Matrix Examples 9.4 Diattenuation Calculation Using Singular Value Decomposition 9.5 Example—Interferometer with a Polarizing Beam Splitter
9.5.1 Ray Tracing the Reference Path 9.5.2 Ray Tracing through the Test Path 9.5.3 Ray Tracing through the Analyzer 9.5.4 Cumulative P Matrix for Both Paths
9.6 The Addition Form of Polarization Ray Tracing Matrices
9.6.1 Combining P Matrices for the Interferometer Example
9.7 Example—A Hollow Corner Cube 9.8 Conclusion 9.9 Problem Sets References
Chapter 10 Optical Ray Tracing
10.1 Introduction 10.2 Goals for Ray Tracing 10.3 Specification of Optical Systems
10.3.1 Surface Equations 10.3.2 Apertures 10.3.3 Optical Interfaces 10.3.4 Dummy Surfaces
10.4 Specifications of Light Beams 10.5 System Descriptions
10.5.1 Object Plane 10.5.2 Aperture Stop 10.5.3 Entrance and Exit Pupils 10.5.4 Importance of the Exit Pupil 10.5.5 Marginal and Chief Rays 10.5.6 Numerical Aperture and Lagrange Invariant 10.5.7 Etendué Ξ 10.5.8 Polarized Light
10.6 Ray Tracing
10.6.1 Ray Intercept 10.6.2 Multiplicity of Ray Intercepts with a Surface 10.6.3 Optical Path Length 10.6.4 Reflection and Refraction 10.6.5 Polarization Ray Tracing 10.6.6 s- and p-Components 10.6.7 Amplitude Coefficients and Interface Jones Matrix 10.6.8 Polarization Ray Tracing Matrix
10.7 Wavefront Analysis
10.7.1 Normalized Coordinates 10.7.2 Wavefront Aberration Function 10.7.3 Polarization Aberration Function 10.7.4 Evaluation of the Aberration Function 10.7.5 Seidel Wavefront Aberration Expansion 10.7.6 Zernike Polynomials 10.7.7 Wavefront Quality 10.7.8 Polarization Quality
10.8 Non-Sequential Ray Trace 10.9 Coherent and Incoherent Ray Tracing
10.9.1 Polarization Ray Tracing with Mueller Matrices
10.10 The Use of Polarization Ray Tracing 10.11 Brief History of Polarization Ray Tracing 10.12 Summary and Conclusion 10.13 Problem Sets 10.14 Appendix: Cell Phone Lens Prescription References
Chapter 11 The Jones Pupil and Local Coordinate Systems
11.1 Introduction: Local Coordinates for Entrance and Exit Pupils 11.2 Local Coordinates 11.3 Dipole Coordinates 11.4 Double Pole Coordinates 11.5 High Numerical Aperture Wavefronts 11.6 Converting P Pupils to Jones Pupils 11.7 Example: Cell Phone Lens Aberrations 11.8 Wavefront Aberration Function Difference between Dipole and Double Pole Coordinates 11.9 Conclusion 11.10 Problem Sets References
Chapter 12 Fresnel Aberrations
12.1 Introduction 12.2 Uncoated Single-Element Lens 12.3 Fold Mirror 12.4 Combination of Fold Mirror Systems 12.5 Cassegrain Telescope 12.6 Fresnel Rhomb 12.7 Conclusion 12.8 Problem Sets References
Chapter 13 Thin Films
13.1 Introduction 13.2 Single-Layer Thin Films
13.2.1 Antireflection Coatings 13.2.2 Ideal Single-Layer Antireflection Coating 13.2.3 Metal Beam Splitters
13.3 Multilayer Thin Films
13.3.1 Algorithms 13.3.2 Quarter and Half Wave Films 13.3.3 Reflection-Enhancing Coatings 13.3.4 Polarizing Beam Splitters
13.4 Contributions to Wavefront Aberrations 13.5 Phase Discontinuities 13.6 Conclusion 13.7 Appendix: Derivation of Single-Layer Equations 13.8 Problem Sets References
Chapter 14 Jones Matrix Data Reduction with Pauli Matrices
14.1 Introduction 14.2 Pauli Matrices and Jones Matrices
14.2.1 Pauli Matrix Identities 14.2.2 Expansion in a Sum of Pauli Matrices 14.2.3 Pauli Sign Convention 14.2.4 Pauli Coefficients of a Polarization Element Rotated about the Optical Axis 14.2.5 Eigenvalues and Eigenvectors and Matrix Functions for the Pauli Sum Form 14.2.6 Canonical Summation Form
14.3 Sequences of Polarization Elements 14.4 Exponentiation and Logarithms of Matrices
14.4.1 Exponentiation of Matrices 14.4.2 Logarithms of Matrices 14.4.3 Retarder Matrices 14.4.4 Diattenuator Matrices 14.4.5 Polarization Properties of Homogeneous Jones Matrices
14.5 Elliptical Retarders and the Retarder Space 14.6 Polarization Properties of Inhomogeneous Jones Matrices 14.7 Diattenuation Space and Inhomogeneous Polarization Elements
14.7.1 Superposing the Diattenuation and Retardance Spaces
14.8 Weak Polarization Elements 14.9 Summary and Conclusion 14.10 Problem Sets References
Chapter 15 Paraxial Polarization Aberrations
15.1 Introduction 15.2 Polarization Aberrations
15.2.1 Interaction of Weakly Polarizing Jones Matrices 15.2.2 Polarization of a Sequence of Weakly Polarizing Ray Intercepts
15.3 Paraxial Polarization Aberrations
15.3.1 Paraxial Angle and Plane of Incidence 15.3.2 Paraxial Diattenuation and Retardance 15.3.3 Diattenuation Defocus 15.3.4 Diattenuation Defocus and Retardance Defocus 15.3.5 Diattenuation and Retardance across the Field of View 15.3.6 Polarization Tilt and Piston 15.3.7 Binodal Polarization 15.3.8 Summation of Paraxial Polarization Aberrations over Surfaces
15.4 Paraxial Polarization Analysis of a Seven-Element Lens System 15.5 Higher-Order Polarization Aberrations
15.5.1 Electric Field Aberrations 15.5.2 Orientors 15.5.3 Diattenuation and Retardance
15.6 Polarization Aberration Measurements 15.7 Summary and Conclusion 15.8 Appendix
15.8.1 Paraxial Optics 15.8.2 Setting Up the Optical System 15.8.3 The Paraxial Ray Trace 15.8.4 Reduced Thicknesses and Angles 15.8.5 Paraxial Skew Rays
15.9 Problem Sets References
Chapter 16 Image Formation with Polarization Aberration
16.1 Introduction 16.2 Discrete Fourier Transformation 16.3 Jones Exit Pupil and Jones Pupil Function 16.4 Amplitude Response Matrix (ARM) 16.5 Mueller Point Spread Matrix (MPSM) 16.6 The Scale of the ARM and MPSM 16.7 Polarization Structure of Images 16.8 Optical Transfer Matrix (OTM) 16.9 Example—Polarized Pupil with Unpolarized Object 16.10 Example—Solid Corner Cube Retroreflector 16.11 Example—Critical Angle Corner Cube Retroreflector 16.12 Discussion and Conclusion 16.13 Problem Sets References
Chapter 17 Parallel Transport and the Calculation of Retardance
17.1 Introduction
17.1.1 Purpose of the Proper Retardance Calculation
17.2 Geometrical Transformations
17.2.1 Rotation of Local Coordinates: Polarimeter Viewpoint 17.2.2 Non-Polarizing Optical Systems 17.2.3 Parallel Transport of Vectors 17.2.4 Parallel Transport of Vectors with Reflection 17.2.5 Parallel Transport Matrix, Q
17.3 Canonical Local Coordinates 17.4 Proper Retardance Calculations
17.4.1 Definition of the Proper Retardance
17.5 Separating Geometric Transformations from P
17.5.1 The Proper Retardance Algorithm for P, Method 1 17.5.2 The Proper Retardance Algorithm for P, Method 2 17.5.3 Retardance Range
17.6 Examples
17.6.1 Ideal Reflection at Normal Incidence 17.6.2 An Aluminum-Coated Three-Fold Mirror System Example
17.7 Conclusion 17.8 Problem Sets References
Chapter 18 A Skew Aberration
18.1 Introduction 18.2 Definition of Skew Aberration 18.3 Skew Aberration Algorithm 18.4 Lens Example—U.S. Patent 2,896,506 18.5 Skew Aberration in Paraxial Ray Trace 18.6 Example of Paraxial Skew Aberration 18.7 Skew Aberration’s Effect on PSF 18.8 PSM for U.S. Patent 2,896,506 18.9 Statistics—CODE V Patent Library 18.10 Conclusion 18.11 Problem Sets References
Chapter 19 Birefringent Ray Trace
19.1 Ray Tracing in Birefringent Materials 19.2 Description of Electromagnetic Waves in Anisotropic Media 19.3 Defining Birefringent Materials 19.4 Eigenmodes of Birefringent Materials 19.5 Reflections and Refractions at Birefringent Interface 19.6 Data Structure for Ray Doubling 19.7 Polarization Ray Tracing Matrices for Birefringent Interfaces
19.7.1 Case I: Isotropic-to-Isotropic Intercept 19.7.2 Case II: Isotropic-to-Birefringent Interface 19.7.3 Case III: Birefringent-to-Isotropic Interface 19.7.4 Case IV: Birefringent-to-Birefringent Interface
19.8 Example: Ray Splitting through Three Biaxial Crystal Blocks 19.9 Example: Reflections Inside a Biaxial Cube 19.10 Conclusion 19.11 Problem Sets References
Chapter 20 Beam Combination with Polarization Ray Tracing Matrices
20.1 Introduction 20.2 Wavefronts and Ray Grids 20.3 Co-Propagating Wavefront Combination 20.4 Non-Co-Propagating Wavefront Combination 20.5 Combining Irregular Ray Grids
20.5.1 General Steps to Combine Misaligned Ray Data 20.5.2 Inverse-Distance Weighted Interpolation
20.6 Conclusion 20.7 Problem Sets References
Chapter 21 Uniaxial Materials and Components
21.1 Optical Design Issues in Uniaxial Materials 21.2 Descriptions of Uniaxial Materials 21.3 Eigenmodes of Uniaxial Materials 21.4 Reflections and Refractions at a Uniaxial Interface 21.5 Index Ellipsoid, Optical Indicatrix, and K- and S -Surfaces 21.6 Aberrations of Crystal Waveplates
21.6.1 A-Plate Aberrations 21.6.2 C-Plate Aberrations
21.7 Image Formation through an A-Plate 21.8 Walk-Off Plate 21.9 Crystal Prisms 21.10 Problem Sets References
Chapter 22 Crystal Polarizers
22.1 Introduction to Crystal Polarizers 22.2 Materials for Crystal Polarizers 22.3 Glan–Taylor Polarizer
22.3.1 Limited FOV 22.3.2 Multiple Potential Ray Paths 22.3.3 Multiple Polarized Wavefronts 22.3.4 Polarized Wavefronts Exiting from the Polarizer
22.4 Aberrations of the Glan–Taylor Polarizer 22.5 Pairs of Glan–Taylor Polarizers 22.6 Conclusion References
Chapter 23 Diffractive Optical Elements
23.1 Introduction 23.2 The Grating Equation 23.3 Ray Tracing DOEs
23.3.1 Reflection Diffractive Gratings 23.3.2 Wire Grid Polarizers 23.3.3 Diffractive Retarders 23.3.4 Diffractive Subwavelength Antireflection Coatings
23.4 Summary of the RCWA Algorithm 23.5 Problem Sets Acknowledgments References
Chapter 24 Liquid Crystal Cells
24.1 Introduction 24.2 Liquid Crystals
24.2.1 Dielectric Anisotropy
24.3 Liquid Crystal Cells
24.3.1 Construction of Liquid Crystal Cells 24.3.2 Restoring Forces 24.3.3 Liquid Crystal Display: High Contrast Ratio Intensity Modulation
24.4 Configurations of Liquid Crystal Cells
24.4.1 The Fréedericksz Cell 24.4.2 90° Twisted Nematic Cell 24.4.3 Super Twisted Nematic Cell 24.4.4 Vertically Aligned Nematic Cell 24.4.5 In-Plane Switching Cell 24.4.6 Liquid Crystal on Silicon Cells 24.4.7 Blue Phase LC Cells
24.5 Polarization Models
24.5.1 Extended Jones Matrix Model 24.5.2 Single Pass with Polarization Ray Tracing Matrices 24.5.3 Multilayer Interference Models 24.5.4 Calculation for Liquid Crystal Cell ZLI-1646
24.6 Issues in the Construction of LC Cells
24.6.1 Spacers 24.6.2 Disclinations 24.6.3 Pretilt 24.6.4 Oscillating Square Wave Voltage
24.7 Limitations on LC Cell Performance
24.7.1 LC Cell Speed 24.7.2 Spectral Variation of Exiting Polarization State 24.7.3 Variation of Retardance with Angle of Incidence 24.7.4 Compensating LC Cells’ Polarization Aberrations with Biaxial Films 24.7.5 Polarizer Leakage 24.7.6 Depolarization
24.8 Testing Liquid Crystal Cells
24.8.1 Twisted Nematic Cell Example 24.8.2 IPS Tests 24.8.3 VAN Cell 24.8.4 MVA Cell Test 24.8.5 Sheet Retarder Defect 24.8.6 Misalignment between Analyzer and Exiting Polarization State
24.9 Problem Sets Acknowledgment References
Chapter 25 Stress-Induced Birefringence
25.1 Introduction to Stress Birefringence 25.2 Stress Birefringence in Optical Systems 25.3 Theory of Stress-Induced Birefringence 25.4 Ray Tracing in Stress Birefringent Components 25.5 Ray Tracing through Stress Birefringence Components with Spatially Varying Stress
25.5.1 Storage of System Shape 25.5.2 Refraction and Reflections 25.5.3 Stress Data Format 25.5.4 Polarization Ray Tracing Matrix for Spatially Varying Biaxial Stress 25.5.5 Examples of Spatially Varying Stress Function
25.6 Effects of Stress Birefringence on Optical System Performance
25.6.1 Observing Stress Birefringence Using Polariscope 25.6.2 Simulations of Injection-Molded Lens 25.6.3 Simulation of a Plastic DVD Lens
25.7 Conclusion 25.8 Problem Sets Acknowledgments References
Chapter 26 Multi-Order Retarders and the Mystery of Discontinuities
26.1 Introduction 26.2 Mystery of Retardance Discontinuity 26.3 Retardance Unwrapping for Homogeneous Retarder Systems Using a Simple Dispersion Model
26.3.1 Dispersion Model 26.3.2 Retardance of the Homogeneous Retarder System 26.3.3 Homogeneous Retarder’s Trajectory and Retardance Unwrapping in Retarder Space
26.4 Discontinuities in Unwrapped Retardance Values for Compound Retarder Systems with Arbitrary Alignment
26.4.1 Compound Retarder Jones Matrix Decomposition 26.4.2 Compound Retarder’s Trajectory in Retarder Space 26.4.3 Multiple Modes Exit the Compound Retarder System 26.4.4 Compound Retarder Example at 45°
26.5 Conclusion 26.6 Appendix 26.7 Problem Sets References
Chapter 27 Summary and Conclusions
27.1 Difficult Issues 27.2 Polarization Ray Tracing Complications
27.2.1 Optical System Description Complications 27.2.2 Elliptical Polarization Properties of Ray Paths 27.2.3 Optical Path Length and Phase 27.2.4 Definition of Retardance 27.2.5 Retardance and Skew Aberration 27.2.6 Multi-Order Retardance 27.2.7 Birefringent Ray Tracing Complications 27.2.8 Coherence Simulation 27.2.9 Scattering 27.2.10 Depolarization
27.3 Polarization Ray Tracing Concepts and Methods
27.3.1 Jones Matrices and Jones Pupil 27.3.2 P Matrix and Local Coordinates 27.3.3 Generalization of PSF and OTF 27.3.4 Ray Doubling, Ray Trees, and Data Structures 27.3.5 Mode Combination 27.3.6 Alternative Simulation Methods
27.4 Polarization Aberration Mitigation
27.4.1 Analyzing Polarization Ray Tracing Output
27.5 Comparison of Polarization Ray Tracing and Polarization Aberrations
27.5.1 Aluminum Coating and Polarization Aberration Expression 27.5.2 Polarization Ray Trace and the Jones Pupil 27.5.3 Aberration Expression for the Jones Pupil 27.5.4 Diattenuation and Retardance Contributions 27.5.5 Design Rules Based on Polarization Aberrations
27.5.5.1 Diattenuation at the Center of the Pupil 27.5.5.2 Retardance at the Center of the Pupil 27.5.5.3 Linear Variation of Diattenuation 27.5.5.4 Linear Variation of Retardance, the PSF Shear between the XX- and YY-Components 27.5.5.5 The Polarization-Dependent Astigmatism 27.5.5.6 The Fraction of Light in the Ghost PSF in XY- and YX-Components
27.5.6 Amplitude Response Matrix 27.5.7 Mueller Matrix Point Spread Matrices 27.5.8 Location of the PSF Image Components
References
Index
  • ← Prev
  • Back
  • Next →
  • ← Prev
  • Back
  • Next →

Chief Librarian: Las Zenow <zenow@riseup.net>
Fork the source code from gitlab
.

This is a mirror of the Tor onion service:
http://kx5thpx2olielkihfyo4jgjqfb7zx7wxr3sd4xzt26ochei4m6f7tayd.onion