Log In
Or create an account ->
Imperial Library
Home
About
News
Upload
Forum
Help
Login/SignUp
Index
Cover Page
Title Page
Copyright Page
Contents
Introduction
Chapter 1: History of Geometry
Ancient Geometry: Practical and Empirical
Finding the Right Angle
Locating the Inaccessible
Estimating the Wealth
Ancient Geometry: Abstract and Applied
The Three Classical Problems
Doubling the Cube
Trisecting the Angle
Squaring the Circle
Idealization and Proof
The Euclidean Synthesis
Gnomonics and the Cone
Astronomy and Trigonometry
Calculation
Epistemology
Ancient Geometry: Cosmological and Metaphysical
Pythagorean Numbers and Platonic Solids
Measuring the Earth and Heavens
The Post-Classical Period
Passage Through Islam
Europe Rediscovers the Classics
Linear Perspective
Transformation
French Circles
Projective Geometry
Cartesian Geometry
Geometrical Calculus
The World System
Relaxation and Rigour
Projection Again
Non-Euclidean Geometries
A Grand Synthesis
The Real World
Chapter 2: Branches of Geometry
Euclidean Geometry
Fundamentals
Plane Geometry
Congruence of Triangles
Similarity of Triangles
Areas
Pythagorean Theorem
Circles
Regular Polygons
Conic Sections and Geometric Art
Solid Geometry
Volume
Regular Solids
Conic Section
Analytic Definition
Greek Origins
Post-Greek Applications
Analytic Geometry
Elementary Analytic Geometry
Analytic Geometry of Three and More Dimensions
Vector Analysis
Projections
Algebraic Geometry
Projective Geometry
Parallel Lines and the Projection of Infinity
Projective Invariants
Projective Conic Sections
Differential Geometry
Curvature of Curves
Curvature of Surfaces
Shortest Paths on a Surface
Non-Euclidean Geometry
Comparison of Euclidean, Spherical, and Hyperbolic Geometries
Spherical Geometry
Hyperbolic Geometry
Topology
Basic Concepts of General Topology
Simply Connected
Topological Equivalence
Homeomorphism
Topological Structure
Algebraic Topology
Fundamental Group
Knot Theory
Graph Theory
Chapter 3: Biographies
Ancient Greek and Islamic Geometers
Apollonius of Perga
Archimedes
His Life
His Works
His Influence
Archytas of Tarentum
Conon of Samos
Eratosthenes of Cyrene
Euclid
Life
Sources and Contents of the Elements
Euclid’s Axioms and Euclid’s Common Notions
Renditions of the Elements
Other Writings
Assessment
Eudoxus of Cnidus
Life
Mathematician
Assessment
Heron of Alexandria
Hippias of Elis
Hippocrates of Chios
Menaechmus
Omar Khayyam
Pappus of Alexandria
Pythagoras
Thales of Miletus
Theaetetus
Pre-Modern (Pre-1800) Geometers
Bonaventura Cavalieri
Giovanni Ceva
Girard Desargues
René Descartes
Leonhard Euler
Gaspard Monge, count de Péluse
Gilles Personne de Roberval
Simon Stevin
Modern Geometers
Lars Valerian Ahlfors
Pavel Sergeevich Aleksandrov
James W. Alexander II
Sir Michael Francis Atiyah
Eugenio Beltrami
Enrico Betti
János Bolyai
Charles-Julien Brianchon
Luitzen Egbertus Jan Brouwer
Michel Chasles
Shiing-shen Chern
William Kingdon Clifford
Pierre René Deligne
Simon Kirwan Donaldson
Vladimir Gershonovich Drinfeld
Alexandre Grothendieck
David Hilbert
Gaston Maurice Julia
Felix Klein
Niels Fabian Helge von Koch
Kodaira Kunihiko
Nikolay Ivanovich Lobachevsky
Benoit Mandelbrot
John Willard Milnor
Hermann Minkowski
August Ferdinand Möbius
Mori Shigefumi
David Bryant Mumford
Sergey Petrovich Novikov
Grigori Perelman
Henri Poincaré
Jean-Victor Poncelet
Bernhard Riemann
Jean-Pierre Serre
Wacław Sierpiński
Stephen Smale
Karl Georg Christian von Staudt
Jakob Steiner
René Frédéric Thom
William Paul Thurston
Oswald Veblen
Vladimir Voevodsky
André Weil
Wendelin Werner
Shing-Tung Yau
Appendix of Geometric Terms and Concepts
Algebraic Surface
Angle Trisection: Archimedes’ Method
Angle Trisection: Quadratrix of Hippias
Axiom
Axiomatic Method
Brachistochrone
Bridge of Asses
Brouwer’s Fixed Point Theorem
Catenary
Ceva’s Theorem
Circle
Compactness
Cone
Coordinate Systems
Cross Ratio
Curve
Cycloid
Cylinder
Desargues’s Theorem
Dimension
Duality
The Elements Since the Middle Ages
Ellipse
Ellipsoid
Envelope
Euclid’s Windmill
Euclidean Space
Method of Exhaustion
Fractal
Golden Ratio
Graph
Harmonic Construction
Hausdorff Space
Hilbert Space
Hippocrates’ Quadrature of the Lune
Hyperbola
Hyperboloid
Incommensurables
Isometric Drawing
Königsberg Bridge Problem
Line
Measuring the Earth, Classical and Arabic
Measuring the Earth, Modern
Metric Space
Parabola
Paraboloid
Parallel Postulate
Pencil
Pi
Platonic Solid
Polygon
Projection
Pythagorean Theorem
Space-Time
Spiral
Square
Thales’ Rectangle
Topological Space
Glossary
Bibliography
Index
← Prev
Back
Next →
← Prev
Back
Next →