1 Macvean, M. For many people, gathering possessions is just the stuff of life. Los Angeles Times https://www.latimes.com/health/la-xpm-2014-mar-21-la-he-keeping-stuff-20140322-story.html (21 March 2014).
2 Keeling, R. F. et al. Atmospheric Monthly in situ CO2 Data – Mauna Loa Observatory, Hawaii. In Scripps CO2 Program Data. UC San Diego Library Digital Collections. https://doi.org/10.6075/J08W3BHW (accessed, 7 February 2020).
3 Meure, C. M. et al. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophysical Research Letters 33 (2006).
4 Griffin, D. P. CDP carbon majors report 2017. https://www.cdp.net/en/reports/archive (accessed, 21 January 2019).
5 World Meteorological Organization. WMO statement on the state of the global climate in 2019. https://public.wmo.int/en/resources/library/wmo-statement-state-of-global-climate-2016 (accessed, 2020).
6 World Meteorological Organization. WMO statement on the state of the global climate in 2018. https://library.wmo.int/doc_num.php?explnum_id=5789 (2019).
7 Krishnan, R. et al. Unravelling climate change in the Hindu Kush Himalaya: rapid warming in the mountains and increasing extremes. In The Hindu Kush Himalaya Assessment. Mountains, Climate Change, Sustainability and People (eds Wester, P., Mishra, A., Mukherji, A. & Shrestha, A. B.) 57–97 (Springer International Publishing, 2019). doi:10.1007/978-3-319-92288-1_3.
8 World Meteorological Organization. 2017 is set to be in the top three hottest years, with record-breaking extreme weather. https://public.wmo.int/en/media/press-release/2017-set-be-top-three-hottest-years-record-breaking-extreme-weather(2017).
9 World Meteorological Organization. WMO climate statement: past 4 years warmest on record. https://public.wmo.int/en/media/press-release/wmo-climate-statement-past-4-years-warmest-record(2018).
10 Internal Displacement Monitoring Centre. Global report on internal displacement, 2018. https://www.internal-displacement.org/sites/default/files/publications/documents/201805-final-GRID-2018_0.pdf(2018).
11 IEA. Global energy and CO2 status report, 2019. https://www.iea.org/reports/global-energy-co2-status-report-2019(IEA,2019).
12 CAIT Climate Data Explorer via Climate Watch. Total greenhouse gas emissions including land use change and forestry, measured in tonnes of carbon dioxide-equivalents 1990–2016. https://www.climatewatchdata.org/data-explorer/historical-emissions (accessed, 15 November 2019).
13 The emissions gap report 2017: a UN environment synthesis report. https://www.unenvironment.org/resources/emissions-gap-report-2017(2017).
14 Rogelj, J. et al. Understanding the origin of Paris Agreement emission uncertainties. Nature Communications 8, 15748 (2017).
15 The Global Commission on the Economy and Climate. The new climate economy. https://newclimateeconomy.report/2018/2018).
16 Victor, D. G. et al. Prove Paris was more than paper promises. Nature News 548, 25 (2017).
17 Pain, S. Power through the ages. Nature 551, S134 (2017).
18 IEA. Global energy and CO2 status report, 2019: Analysis. https://www.iea.org/reports/global-energy-and-co2-status-report-2019/emissions(IEA,2019).
19 Howarth, R. W. Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: implications for policy. Energy and Emission Control Technologies https://www.dovepress.com/methane-emissions-and-climatic-warming-risk-from-hydraulic-fracturing--peer-reviewed-article-EECT(2015)doi:10.2147/EECT.S61539.
20 Friedlingstein, P. et al. Global carbon budget 2019. Earth System Science Data 11, 1783–1838 (2019).
21 Psarras, P. et al. Slicing the pie: how big could carbon dioxide removal be? Wiley Interdisciplinary Reviews: Energy and Environment 6, e253 (2017).
22 Gerber, P. J. et al. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome (2013).
23 Griscom, B. W. et al. Natural climate solutions. PNAS 114, 11645–11650 (2017).
24 Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
25 Veldman, J. W. et al. Comment on “The global tree restoration potential.” Science 366, eaay7976 (2019).
26 Meyfroidt, P. et al. Forest transitions, trade, and the global displacement of land use. Proceedings of the National Academy of Sciences 107, 20917–20922 (2010).
27 Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).
28 Thompson, A. The new plants that could save us from climate change. Popular Mechanics https://www.popularmechanics.com/science/green-tech/a14000753/the-plants-that-could-save-us-from-climate-change/(2017).
29 de Jong, E. & Jungmeier, G. Biorefinery concepts in comparison to petrochemical refineries. In Industrial Biorefineries and White Biotechnology, 3–33 (Elsevier, 2016).
30 Friedmann, S. Julio, Fan, Z. & Tang, K. Low-Carbon Heat Solutions for Heavy Industry. Sources, Options, and Costs Today. New York (Center on Global Energy Policy, 2019).
31 Dahlmann, K. et al. Climate-compatible air transport system: climate impact mitigation potential for actual and future aircraft. Aerospace 3, 38 (2016).
32 Scherer, L. & Pfister, S. Hydropower’s biogenic carbon footprint. PLOS ONE 11, e0161947 (2016).
33 Kennedy, M., Mrofka, D. & von der Borch, C. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453, 642–645 (2008).
34 Sengupta, A. & Gupta, N. K. MWCNTs based sorbents for nuclear waste management: a review. Journal of Environmental Chemical Engineering 5, 5099–5114 (2017).
35 Corless, V. How do we power a sustainable future? Advanced Science News https://www.advancedsciencenews.com/how-do-we-power-a-sustainable-future/(2019).
36 Thurner, P. W., Mittermeier, L. & Küchenhoff, H. How long does it take to build a nuclear power plant? A non-parametric event history approach with P-splines. Energy Policy 70, 163–171 (2014).
37 Cho, A. The little reactors that could. Science 363, 806–809 (2019).
38 Mental-health effects of the Chernobyl disaster live on. The Lancet 366, 958 (2005).
39 World Health Organization. Chernobyl: the true scale of the accident. http://www.who.int/mediacentre/news/releases/2005/pr38/en/(2005).
40 Domingo, T. et al. Fukushima-derived radioactivity measurements in Pacific salmon and soil samples collected in British Columbia, Canada. Can. J. Chem. 96, 124–131 (2017).
41 Schrope, M. Nuclear power prevents more deaths than it causes. Chemical & Engineering News https://cen.acs.org/articles/91/web/2013/04/Nuclear-Power-Prevents-Deaths-Causes.html (2 April 2013).
42 Kavlak, G., McNerney, J. & Trancik, J. E. Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy 123, 700–710 (2018).
43 Kåberger, T. Progress of renewable electricity replacing fossil fuels. Global Energy Interconnection 1, 48–52 (2018).
44 BP p.l.c., BP Energy Outlook 2017 Edition. (2017).
45 IEA. Global EV outlook 2018. https://www.iea.org/reports/global-ev-outlook-2018Paris(IEA,2018).
46 Newman, P. 1.1 – The renewable cities revolution. In Urban Energy Transition 2nd edn (ed Droege, P.) 11–30 (Elsevier, 2018). doi:10.1016/B978-0-08 -102074-6.00015-2.
47 Hawkins, T. R., Singh, B., Majeau-Bettez, G. & Strømman, A. H. Comparative environmental life cycle assessment of conventional and electric vehicles. Journal of Industrial Ecology 17, 53–64 (2013).
48 Sofiev, M. et al. Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nat Commun 9, 1–12 (2018).
49 Schäfer, A. W. et al. Technological, economic and environmental prospects of all-electric aircraft. Nat. Energy 4, 160–166 (2019).
50 Lambert, F. A new all-electric and autonomous cargo ship is planned for operation in 2018. Electrek https://electrek.co/2017/05/11/all-electric-autonomous-cargo-ship/(2017).
51 The world’s first electric autonomous container ship to set sail in Norway. CleanTechnica https://cleantechnica.com/2018/08/23/the-worlds-first-electric-autonomous-container-ship-to-set-sail-in-norway/(2018).
52 Lambert, F. Tesla Semi met and then crushed almost all of our expectations. Electrek https://electrek.co/2017/11/17/tesla-semi-electric-truck-specs-cost/ (2017).
53 Hao, K. Airbus, Rolls Royce, and Siemens are teaming up to build a hybrid-electric plane. Quartz https://qz.com/1139603/airbus-rolls-royce-and-siemens-are-partnering-to-create-a-hybrid-electric-plane/ (2017).
54 Gross, M. A planet with two billion cars. Current Biology 26, R307–R310 (2016).
55 Berners-Lee, M. How Bad Are Bananas? The Carbon Footprint of Everything (Greystone Books, 2010).
56 IEA. World energy outlook, 2019. https://www.iea.org/reports/world-energy-outlook-2019Paris(IEA,2019).
57 Coady, D., Parry, I., Sears, L. & Shang, B. How large are global fossil fuel subsidies? World Development 91, 11–27 (2017).
58 Erickson, P. et al. Why fossil fuel producer subsidies matter. Nature 578, E1–E4 (2020).
59 Digiconomist. Bitcoin Energy Consumption Index. https://digiconomist.net/bitcoin-energy-consumption(accessed, 23 January 2019).
60 Vries, A. de. Bitcoin’s growing energy problem. Joule 2, 801–805 (2018).
61 MacKay, D. J. Sustainable Energy – Without the Hot Air (UIT Cambridge Ltd., 2009).
62 Musk, E. & Straube, J. B. Model S efficiency and range. Tesla https://www.tesla.com/en_CA/blog/model-s-efficiency-and-range2012).
63 Deutch, J. Decoupling economic growth and carbon emissions. Joule 1, 3–5 (2017).
64 Gore, T. Extreme carbon inequality: why the Paris climate deal must put the poorest, lowest emitting and most vulnerable people first. Oxfam International https://www.oxfam.org/en/research/extreme-carboninequality.2015).
65 Vaughan, A. Carbon emissions per person, by country. The Guardian http://www.theguardian.com/environment/datablog/2009/sep/02/carbon-emissions-per-person-capita(2September2009).
66 O’Neill, B. C. et al. Global demographic trends and future carbon emissions. PNAS 107, 17521–17526 (2010).
67 Kotler, S. The five-year ban: because a billion less people is a great place to start. Psychology Today http://www.psychologytoday.com/blog/the-playing-field/200902/the-five-year-ban-because-billion-less-people-is-great-place-start(8February2009).
68 Lutz, W., O’Neill, B. C. & Scherbov, S. Europe’s population at a turning point. Science 299, 1991–1992 (2003).
69 Hartmann, B. Reproductive Rights and Wrongs. The Global Politics of Population Control (South End Press, 1995).
70 Dyck, E. & Lux, M. Population control in the ‘Global North’? Canada’s response to Indigenous reproductive rights and neo-eugenics. The Canadian Historical Review 97, 481–512 (2016).
71 Stephenson, J., Newman, K. & Mayhew, S. Population dynamics and climate change: what are the links? J Public Health (Oxf) 32, 150–156 (2010).
72 Detraz, N. Gender and the Environment (Polity Press, 2016).
73 Bradshaw, C. J. A. & Brook, B. W. Reply to O’Neill et al. and O’Sullivan: fertility reduction will help, but only in the long term. PNAS 112, E508–E509 (2015).
74 Bongaarts, J. & Sinding, S. W. A response to critics of family planning programs. International Perspectives on Sexual and Reproductive Health 35, 039–044 (2009).
75 Muttarak, R. & Lutz, W. Is education a key to reducing vulnerability to natural disasters and hence unavoidable climate change? Ecology and Society 19 (2014).
76 Lutz, W., Muttarak, R. & Striessnig, E. Universal education is key to enhanced climate adaptation. Science 346, 1061–1062 (2014).
77 IEA. World energy outlook, 2016. https://www.iea.org/reports/world-energy-outlook-2016(Paris,2016).
78 Smith, W. & Wagner, G. Stratospheric aerosol injection tactics and costs in the first 15 years of deployment. Environ. Res. Lett. 13, 124001 (2018).
79 Intergovernmental Panel on Climate Change. Global warming of 1.5°C. (2018).
80 Keith, D. W., Wagner, G. & Zabel, C. L. Solar geoengineering reduces atmospheric carbon burden. Nature Climate Change 7, 617–619 (2017).
81 Young, J. R. et al. A guide to extant coccolithophore taxonomy. Journal of Nannoplankton Research, Special Issue 1, 1–132 (2003).
82 Zeebe, R. E. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu. Rev. Earth Planet. Sci. 40, 141–165 (2012).
83 Ridgwell, A. & Zeebe, R. E. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth and Planetary Science Letters 234, 299–315 (2005).
84 Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1, 169–192 (2009).
85 Sperry, J. S. et al. The impact of rising CO2 and acclimation on the response of US forests to global warming. PNAS 116, 25734–25744 (2019).
86 Uddling, J., Broberg, M. C., Feng, Z. & Pleijel, H. Crop quality under rising atmospheric CO2. Current Opinion in Plant Biology 45, 262–267 (2018).
87 Giguère-Croteau, C. et al. North America’s oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster. PNAS 116, 2749–2754 (2019).
88 Balaraman, K. Whales keep carbon out of the atmosphere. Scientific American https://www.scientificamerican.com/article/whales-keep-carbon-out-of-the-atmosphere/(11April2017).
89 International Monetary Fund. Nature’s solution to climate change – IMF F&D. https://www.imf.org/external/pubs/ft/fandd/2019/12/natures-solution-to-climate-change-chami.htm.
90 Chatterjee, A. et al. Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: findings from NASA’s OCO-2 mission. Science 358, eaam5776 (2017).
91 Liu, J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 358, eaam5690 (2017).
92 Eldering, A. et al. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science 358, eaam5745 (2017).
93 Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).
94 Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nature Geoscience 2, 831–836 (2009).
95 Veen, C. J. van der. Fourier and the “greenhouse effect.” Polar Geography (2008).
96 Tyndall, J. On the transmission of heat of different qualities through gases of different kinds. In Notices of the Proceedings Vol. 3 (William Clowes and Sons, 1859).
97 McNeill, L. This lady scientist defined the greenhouse effect but didn’t get the credit, because sexism. Smithsonian Magazine https://www.smithsonianmag.com/science-nature/lady-scientist-helped-revolutionize-climate-science-didnt-get-credit-180961291/ (5 December2016).
98 Jackson, R. Eunice Foote, John Tyndall and a question of priority. Notes and Records: the Royal Society Journal of the History of Science 74, 105–118 (2020).
99 Molina, M. J. & Rowland, F. S. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249, 810 (1974).
100 Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207 (1985).
101 Schrope, M. Successes in fight to save ozone layer could close holes by 2050. Nature 408, 627 (2000).
102 Chipperfield, M. P. et al. Detecting recovery of the stratospheric ozone layer. Nature 549, 211–218 (2017).
103 Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).
104 Myhre, G. et al. Anthropogenic and natural radiative forcing. In Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).
105 Williams, P. D. Increased light, moderate, and severe clear-air turbulence in response to climate change. Adv. Atmos. Sci. 34, 576–586 (2017).
106 Williams, P. D. & Joshi, M. M. Intensification of winter transatlantic aviation turbulence in response to climate change. Nature Climate Change 3, 644–648 (2013).
107 BBC News. Phoenix flights cancelled because it’s too hot for planes. https://www.bbc.com/news/world-us-canada-40339730(20June2017).
108 Thompson, A. German startup successfully tests electric VTOL “flying taxi.” Popular Mechanics https://www.popularmechanics.com/flight/a26173/german-startup-tests-electric-vtol-taxi/(2017).
109 Stern, P. C., Perkins, J. H., Sparks, R. E. & Knox, R. A. The challenge of climate-change neoskepticism. Science 353, 653–654 (2016).
110 Marotzke, J. Quantifying the irreducible uncertainty in near-term climate projections. Wiley Interdisciplinary Reviews: Climate Change 10, e563 (2019).
111 Lean, J. L. Observation-based detection and attribution of 21st century climate change. Wiley Interdisciplinary Reviews: Climate Change 9, e511 (2018).
112 Maxton, G. & Randers, J. Reinventing Prosperity. Managing Economic Growth to Reduce Unemployment, Inequality, and Climate Change (Greystone Books, 2016).
113 Klein, N. This Changes Everything (Knopf Canada, 2014).
114 Truelove, H. B., Carrico, A. R., Weber, E. U., Raimi, K. T. & Vandenbergh, M. P. Positive and negative spillover of pro-environmental behavior: an integrative review and theoretical framework. Global Environmental Change 29, 127–138 (2014).
115 Sanne, C. Willing consumers – or locked-in? Policies for a sustainable consumption. Ecological Economics 42, 273–287 (2002).
116 Weber, C. L., Peters, G. P., Guan, D. & Hubacek, K. The contribution of Chinese exports to climate change. Energy Policy 36, 3572–3577 (2008).
117 Helveston, J. & Nahm, J. China’s key role in scaling low-carbon energy technologies. Science 366, 794–796 (2019).
118 Wang, H. et al. China’s CO2 peak before 2030 implied from characteristics and growth of cities. Nat. Sustain. 2, 748–754 (2019).
119 Nixon, R. Slow Violence and the Environmentalism of the Poor (Harvard University Press, 2013).
120 Postman, N. Amusing Ourselves to Death. Public Discourse in the Age of Show Business (Penguin Books, 1986).
121 Mauritsen, T. & Pincus, R. Committed warming inferred from observations. Nature Climate Change 7, 652–655 (2017).
122 Raftery, A. E., Zimmer, A., Frierson, D. M. W., Startz, R. & Liu, P. Less than 2 °C warming by 2100 unlikely. Nature Climate Change 7, 637–641 (2017).
123 Mortillaro, N. The psychology of climate change: why people deny the evidence. CBC https://www.cbc.ca/news/technology/climate-change-psychology-1.4920872(2December2018).
124 Majumdar, A. & Deutch, J. Research opportunities for CO2 utilization and negative emissions at the gigatonne scale. Joule 2, 805–809 (2018).
125 Robin, L. Environmental humanities and climate change: understanding humans geologically and other life forms ethically. Wiley Interdisciplinary Reviews: Climate Change 9, e499 (2018).
126 Ghosh, A. The Great Derangement: Climate Change and the Unthinkable (University of Chicago Press, 2016).
127 Haberkorn, T. Climate change: the coming calamity. Die Zeit (7 November 2018).
128 Gehl, L. Claiming Anishinaabe. Decolonizing the Human Spirit (University of Regina Press, 2017).
129 McCright, A. M. & Xiao, C. Gender and environmental concern: insights from recent work and for future research. Society & Natural Resources 27, 1109–1113 (2014).
130 McCright, A. M. & Dunlap, R. E. The politicization of climate change and polarization in the American public’s views of global warming, 2001–2010. The Sociological Quarterly 52, 155–194 (2011).
131 Best, H. & Lanzendorf, M. Division of labour and gender differences in metropolitan car use: an empirical study in Cologne, Germany. Journal of Transport Geography 13, 109–121 (2005).
132 Räty, R. & Carlsson-Kanyama, A. Energy consumption by gender in some European countries. Energy Policy 38, 646–649 (2010).
133 Lamb, W. F. & Steinberger, J. K. Human well-being and climate change mitigation. Wiley Interdisciplinary Reviews: Climate Change 8, e485 (2017).
134 Mazur, A. & Rosa, E. Energy and life-style. Science 186, 607–610 (1974).
135 Mazur, A. Does increasing energy or electricity consumption improve quality of life in industrial nations? Energy Policy 39, 2568–2572 (2011).
136 Morrison, T. H. et al. Mitigation and adaptation in polycentric systems: sources of power in the pursuit of collective goals. Wiley Interdisciplinary Reviews: Climate Change 8, e479 (2017).
137 Struzik, E. Firestorm. How Wildfire Will Shape Our Future (Island Press, 2017).
138 Schiermeier, Q. Landmark court ruling tells Dutch government to do more on climate change. Nature News doi:10.1038/nature.2015.17841 (24 June 2015).
139 Khan, T. Climate change battles are increasingly being fought, and won, in court. The Guardian (8 March 2017).
140 Milman, O. New York City plans to divest $5bn from fossil fuels and sue oil companies. The Guardian (10 January 2018).
141 Sutterud, T. & Ulven, E. Norway sued over Arctic oil exploration plans. The Guardian (14 November 2017).
142 Robin, L. Environmental humanities and climate change: understanding humans geologically and other life forms ethically. Wiley Interdisciplinary Reviews: Climate Change 9, e499 (2018).
143 Kendall, C. Ecuadorians to vote on constitution making its nature a rights-bearing entitiy. The Guardian (2008).
144 O’Donnell, E. & Talbot-Jones, J. Three rivers are now legally people – but that’s just the start of looking after them. The Conversation http://theconversation.com/three-rivers-are-now-legally-people-but-thats-just-the-start-of-looking-after-them-74983(23March2017).
145 Watts, J. Indigenous groups win greater climate recognition at Bonn summit. The Guardian (15 November 2017).
146 Eisenstein, M. How social scientists can help to shape climate policy. Nature 551, S142 (2017).
147 Fankhauser, S. & Jotzo, F. Economic growth and development with low-carbon energy. Wiley Interdisciplinary Reviews: Climate Change 9, e495 (2018).
148 Goldthau, A. The G20 must govern the shift to low-carbon energy. Nature News 546, 203 (2017).
149 Polls reveal citizens’ support for Energiewende. Clean Energy Wire. https://www.cleanenergywire.org/factsheets/polls-reveal-citizens-support-energiewende (accessed, 23 January 2019).
150 Leahy, S. Half of U.S. spending power behind Paris climate agreement. National Geographic News https://news.nationalgeographic.com/2017/11/were-still-in-paris-climate-agreement-coalition-bonn-cop23/(15November2017).
151 Stern, P. C. et al. Opportunities and insights for reducing fossil fuel consumption by households and organizations. Nature Energy 1, 16043 (2016).
152 Dietz, S., Bowen, A., Dixon, C. & Gradwell, P. “Climate value at risk” of global financial assets. Nature Climate Change 6, 676–679 (2016).
153 Gambino, L. “Shortsighted, wrong”: Apple, Facebook among tech giants to reject Paris pullout. The Guardian (2 June 2017).
154 Cherian, M. Scotland is now coal-free after shutting off its last coal power plant. Global Citizen https://www.globalcitizen.org/en/content/scotland-closes-longannet-last-coal-energy-plant/(29March2016).
155 BBC. UK Parliament declares climate emergency. https://www.bbc.com/news/uk-politics-48126677 (1 May 2019).
156 The Guardian view on a Green New Deal: we need it now. Editorial. The Guardian (12 May 2019).
157 Ocasio-Cortez, A. Text: H.Res.109 – 116th Congress (2019–2020): Recognizing the duty of the Federal Government to create a Green New Deal. https://www.congress.gov/bill/116th-congress/house-resolution/109/text(2019).
158 Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature- dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).
159 Chakrabarty, D. Climate and capital: on conjoined histories. Critical Inquiry 41, 1–23 (2014).
160 Satish, U. et al. Is CO2 an indoor pollutant? Direct effects of low-to- moderate CO2 concentrations on human decision-making performance. Environ Health Perspect 120, 1671–1677 (2012).
161 Allen, J. G. et al. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments. Environ Health Perspect 124, 805–812 (2016).
162 Jacobson, T. A. et al. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2, 691–701 (2019).
163 Xiong, Y. et al. Indoor air quality in green buildings: a case-study in a residential high-rise building in the northeastern United States. Journal of Environmental Science and Health, Part A 50, 225–242 (2015).
164 Lockwood, C. Building the green way. Harvard Business Review (June 2006).
165 Haines, A. & Ebi, K. The imperative for climate action to protect health. New England Journal of Medicine 380, 263–273 (2019).
166 IEA. Tracking clean energy progress. https://www.iea.org/tcep/(2017).
167 Zeng, N. Carbon sequestration via wood burial. Carbon Balance and Management 3, 1 (2008).
168 Chiaramonti, D. Sustainable aviation fuels: the challenge of decarbonization. Energy Procedia 158, 1202–1207 (2019).
169 Sterman, J. D., Siegel, L. & Rooney-Varga, J. N. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy. Environ. Res. Lett. 13, 015007 (2018).
170 Raimi, D. Going deep on carbon capture, utilization, and storage (CCUS), with Julio Friedmann. (Resources Radio). https://www.resourcesmag. org/resources-radio/going-deep-carbon-capture-utilization-and- storage-ccus-julio-friedmann/(accessed, 6 May 2020).
171 Markewitz, P. et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy & Environmental Science 5, 7281–7305 (2012).
172 IEA. Carbon capture, utilisation and storage. https://www.iea.org/topics/carbon-capture-and-storage/capture/ (2019).
173 Greer, K. et al. Global trends in carbon dioxide (CO2) emissions from fuel combustion in marine fisheries from 1950 to 2016. Marine Policy 107, 103382 (2019).
174 McGrath, M. Climate change “magic bullet” gets boost. BBC News (3 April 2019).
175 National Academies of Sciences, Engineering, Medicine. Negative Emissions Technologies and Reliable Sequestration. A Research Agenda. doi:10.17226/25259 (2018).
176 Alcalde, J. et al. Estimating geological CO2 storage security to deliver on climate mitigation. Nature Communications 9, 2201 (2018).
177 Bellamy, R. & Geden, O. Govern CO2 removal from the ground up. Nat. Geosci. 12, 874–876 (2019).
178 CCUS Projects Network. EU CCS Demonstration Project Network. https://ccsnetwork.eu/ (accessed, 29 May 2019).
179 Roberts, D. Could squeezing more oil out of the ground help fight climate change? Vox https://www.vox.com/energy-and-environment/2019/10/2/20838646/climate-change-carbon-capture-enhanced-oil-recovery-eor (6 December 2019).
180 Núñez-López, V. & Moskal, E. Potential of CO2-EOR for near-term decarbonization. Front. Clim. 1, (2019).
181 Herzog, H. J. Carbon Capture (MIT Press, 2018).
182 Holden, E. Exxon sowed doubt about climate crisis, House Democrats hear in testimony. The Guardian (23 October 2019).
183 Parkin, B. Germany revives underground carbon capture plan in sign of climate struggle. Bloomberg News (20 May 2019).
184 Lim, X. How to make the most of carbon dioxide. Nature News 526, 628 (2015).
185 Armstrong, K. & Styring, P. Assessing the potential of utilization and storage strategies for post-combustion CO2 emissions reduction. Front. Energy Res. 3 (2015).
186 Zimmermann, A. & Kant, M. CO2 utilisation today: report 2017. https://depositonce.tu-berlin.de/handle/11303/6247 (TU Berlin, 2017)
187 United Nations, Green economy. UN Sustainable Development Knowledge Platform https://sustainabledevelopment.un.org/index.php?menu=1446 (accessed, 30 January 2019).
188 Olah, G. A. et al. The continuing need for carbon fuels, hydrocarbons and their products. In Beyond Oil and Gas. The Methanol Economy 65–76 (John Wiley & Sons, Ltd, 2009). doi:10.1002/9783527627806.ch6.
189 Ozin, G. A case for CO2-sourced sustainable synthetic fuels. Advanced Science News https://www.advancedsciencenews.com/a_case_for_co2_sourced_sustainable_synthetic_fuels/ (22 September 2017).
190 Grolms, M. Zero-emission shipping. Advanced Science News https://www.advancedsciencenews.com/zero-emission-shipping/ (2 November 2018).
191 Jia, X., Klemeš, J. J., Varbanov, P. S. & Wan Alwi, S. R. Analyzing the energy consumption, GHG emission, and cost of seawater desalination in China. Energies 12, 463 (2019).
192 Caldera, U. & Breyer, C. Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems. Energy 200, 117507 (2020).
193 Carter, N. T. Desalination and membrane technologies: Federal research and adoption issues. Congressional Research Service Report (2 January 2018).
194 Abdelkareem, M. A., El Haj Assad, M., Sayed, E. T. & Soudan, B. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination 435, 97–113 (2018).
195 Zhang, L., Tang, B., Wu, J., Li, R. & Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Advanced Materials 27, 4889–4894 (2015).
196 Liu, Z. et al. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight. Advanced Functional Materials 29, 1905485 (2019).
197 Izquierdo-Ruiz, F., Otero-de-la-Roza, A., Contreras-García, J., Prieto-Ballesteros, O. & Recio, J. M. Effects of the CO2 guest molecule on the sI clathrate hydrate structure. Materials 9, 777 (2016).
198 Yin, H. et al. Faradaically selective membrane for liquid metal displacement batteries. Nature Energy 3, 127 (2018).
199 Kätelhön, A., Meys, R., Deutz, S., Suh, S. & Bardow, A. Climate change mitigation potential of carbon capture and utilization in the chemical industry. PNAS 116, 11187–11194 (2019).
200 Guminski, A., Böing, F., Murmann, A. & Roon, S. von. System effects of high demand-side electrification rates: a scenario analysis for Germany in 2030. Wiley Interdisciplinary Reviews: Energy and Environment 8, e327 (2019).
201 Qiao, Y. et al. Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 1, 359–370 (2017).
202 Olah, G. A. et al. The “methanol economy”: general aspects. In Beyond Oil and Gas. The Methanol Economy 179–184 (John Wiley & Sons, Ltd, 2009).
203 Wei, J. et al. Directly converting CO2 into a gasoline fuel. Nature Communications 8, 15174 (2017).
204 Fertilizer Canada. Advocacy. https://fertilizercanada.ca/advocacy/ (accessed, 24 January 2019).
205 Wang, L. et al. Greening ammonia toward the solar ammonia refinery. Joule 2, 1055–1074 (2018).
206 Center for International Environmental Law. Plastic and Climate: The Hidden Cost of a Plastic Planet. http://www.ciel.org/plasticandclimate (accessed, 3 June 2019).
207 Tullo, A. Plastic has a problem; is chemical recycling the solution? Chemical & Engineering News http://cen.acs.org/environment/recycling/Plastic-problem-chemical-recycling-solution/97/i39 (6 October 2019).
208 Raman, S. K., Raja, R., Arnold, P. L., Davidson, M. G. & Williams, C. K. Waste not, want not: CO2 (re)cycling into block polymers. Chem. Commun. 15, 7315–7318 (2019) doi:10.1039/C9CC02459J.
209 Faruk, O. et al. Lightweight and Sustainable Materials for Automotive Applications (CRC Press, 2017).
210 Lehne, J. & Preston, F. Making concrete change: innovation in low-carbon cement and concrete. https://reader.chathamhouse.org/making-concrete-change-innovation-low-carbon-cement-and-concrete# (Chatham House, June 2018).
211 CO2 Science and the Global CO2 Initiative: global roadmap for implementing CO2 utilization (7 December 2016).
212 Ellis, L. D., Badel, A. F., Chiang, M. L., Park, R. J.-Y. & Chiang, Y.-M. Toward electrochemical synthesis of cement: an electrolyzer-based process for decarbonating CaCO3 while producing useful gas streams. Proceedings of the National Academy of Sciences 117, 12584–12591 (2020).
213 UBC-led project combats emissions by locking carbon dioxide in mine waste. UBC News https://news.ubc.ca/2019/07/23/ubc-led-project-locks-carbon-dioxide-in-mine-waste/ (23 July 2019).
214 Rhodes, R. Energy. A Human History (Simon & Schuster, 2018).
215 FONA (Forschung für Nachhaltige Entwicklung). Carbon2Chem. https://www.fona.de/en/carbon2chem-21629.html (accessed, 1 January 2019).
216 Collins, L. “World first” as hydrogen used to power commercial steel production. Recharge. https://www.rechargenews.com/transition/-world-first-as-hydrogen-used-to-power-commercial-steel-production/2-1-799308 (28 April 2020).
217 Bender, M., Roussiere, T., Schelling, H., Schuster, S. & Schwab, E. Coupled production of steel and chemicals. Chemie Ingenieur Technik 90, 1782–1805 (2018).
218 Xu, M., Zhang, T. & Allenby, B. How much will China weigh? Perspectives from consumption structure and technology development. Environ. Sci. Technol. 42, 4022–4028 (2008).
219 Chen, Q., Gu, Y., Tang, Z., Wei, W. & Sun, Y. Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: a case study in China. Applied Energy 220, 192–207 (2018).
220 Licht, S. et al. Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes. ACS Cent. Sci. 2, 162–168 (2016).
221 Wang, Q., Chen, X., Jha, A. N. & Rogers, H. Natural gas from shale formation: the evolution, evidences and challenges of shale gas revolution in United States. Renewable and Sustainable Energy Reviews 30, 1–28 (2014).
222 The World Bank. Zero routine flaring by 2030. https://www.worldbank.org/en/programs/zero-routine-flaring-by-2030 (accessed, 1 January 2020).
223 Tavasoli, A. & Ozin, G. Green syngas by solar dry reforming. Joule 2, 571–575 (2018).
224 Campbell, I., Kalanki, A. & Sachar, S. How to counter the climate threat from room air conditioners. www.rmi.org/insight/solving_the_global_cooling_challenge Rocky Mountain Institute (2018).
225 Dittmeyer, R., Klumpp, M., Kant, P. & Ozin, G. Crowd oil not crude oil. Nature Communications 10, 1818 (2019).
226 Artz, J. et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118, 434–504 (2018).
227 Carpenter, J. E. Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nature Biotechnology 28, 319–321 (2010).
228 Ferber, D. Risks and benefits: GM crops in the cross hairs. Science 286, 1662–1666 (1999).
229 Arning, K. et al. Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany. Energy Policy 125, 235–249 (2019).
230 Pacala, S. & Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004).
231 Peters, M. et al. Chemical technologies for exploiting and recycling carbon dioxide into the value chain. ChemSusChem 4, 1216–1240 (2011).
232 Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).
233 Xu, Y. et al. Selective production of aromatics from CO2. Catal. Sci. Technol. 9, 593–610 (2019).
234 Esrafilzadeh, D. et al. Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat. Commun. 10, 1–8 (2019).
235 Dong, Y. et al. Low-temperature molten-salt production of silicon nanowires by the electrochemical reduction of CaSiO3. Angewandte Chemie International Edition 56, 14453–14457 (2017).
236 Cann, O. These are the top 10 emerging technologies of 2017. World Economic Forum https://www.weforum.org/agenda/2017/06/these-are-the-top-10-emerging-technologies-of-2017/ (26 June 2017).
237 Wynes, S. & Nicholas, K. A. The climate mitigation gap: education and government recommendations miss the most effective individual actions. Environ. Res. Lett. 12, 074024 (2017).
238 Gooch, M. et al. The avoidable crisis of food waste: technical report. Value Chain Management International and Second Harvest (17 January 2019).
239 Ivanova, D. et al. Environmental impact assessment of household consumption. Journal of Industrial Ecology 20, 526–536 (2016).
240 Hoicka, C. E. & Das, R. Ambitious deep energy retrofits of buildings to accelerate the 1.5 °C energy transition in Canada. The Canadian Geographer, 1–12 (2020) doi:10.1111/cag.12637.
241 Hischier, R. Car vs. packaging: a first, simple (environmental) sustainability assessment of our changing shopping behaviour. Sustainability 10, 3061 (2018).
242 Weideli, D. Environmental analysis of US online shopping. MIT Center for Transportation & Logistics https://ctl.mit.edu/pub/thesis/environmental-analysis-us-online-shopping (2013).