[5] B. V. Alekseev, A. E. Dubinov, and I. D. Dubinova. Analytical and numerical solutions of generalized dispersion equations for one-dimensional damped plasma oscillation. High Temperature, 43(4):479–485, 2005.
[6] C. S. Alonso. Black Holes in Supergravity with Applications to String Theory. PhD Thesis, Universidad Autónoma de Madrid, 2013.
[7] F. Alzahrani and A. Salem. Sharp bounds for the Lambert W function. Integral. Transf. Spec. Funct., 29(12):971–978, 2018.
[8] P. W. Andersen. Comment on ‘Wind-influenced projectile motion’. Eur. J. Phys., 36(6):Article no. 068003, 2015.
[9] J. V. Armitage and W. F. Eberlein. Elliptic Functions. Cambridge University Press, 2006.
[10] H. Aslaksen. Multiple-valued complex functions and computer algebra. SIGSAM Bulletin, 30(2):12–20, 1995.
[11] A. Baker. Transcendental Number Theory (2nded.). Cambridge University Press, 1990.
[12] C. T. H. Baker, G. A. Bocharov, C. A. H. Paul, and F. A. Rihan. Modelling and analysis of time-lags in some basic patterns of cell proliferation. J. Math. Biology, 37:341–371, 1998.
[13] I. N. Baker and P. J. Rippon. Convergence of infinite exponentials. Ann. Acad. Sci. Fenn. Ser. A., 8:179–186, 1983.
[14] Á. Baricz, D. J. Maširević, and T. Pogány. Series of Bessel and Kummer-Type Functions. Springer, 2017.
[15] W. Benenson, J. W. Harris, H. Stöcker, and H. Lutz (editors). Handbook of Physics. Springer-Verlag, 2002.
[16] C. Bennett and R. Sharpley. Interpolation of Operators. Academic Press, 1988.
[17] R. C. Bernardo, J. P. Esguerra, J. D. Vallejos, and J. J. Canda. Wind-influenced projectile motion. Eur. J. Phys., 36(2):Article no. 025016, 2015.
[18] B. C. Berndt. Ramanujan's Lost Notebook – Part 1. Springer, 1985.
[19] S. Bhamidi, J. M. Steele, and T. Zaman. Twitter event networks and the superstar model. Ann. Appl. Probab., 25(5):2462–2502, 2015.
[20] M. Bóna. Introduction to Enumerative Combinatorics. McGraw-Hill, 2007.
[21] C. W. Borchardt. Über eine Interpolationsformel für eine Art Symmetrischer Functionen und über Deren Anwendung. Math. Abh. der Akademie der Wissenschaften zu Berlin, pages 1–20, 1860.
[22] J. M. Borwein and S. B. Lindstrom. Meetings with Lambert W and other special functions in optimization and analysis. Online J. Pure Appl. Funct. Anal., 1(3):361–396, 2016.
[23] C. J. Bouwkamp. Solution to problem 85-16*: A conjectured definite integral. SIAM Review, 28(4):568–569, 1986.
[24] J. P. Boyd. Global approximations to the principal real-valued branch of the Lambert W-function. Appl. Math. Lett., 11(6):27–31, 1998.
[25] R. Bradford, R. M. Corless, J. H. Davenport, and D. J. Jeffrey. Reasoning about the elementary functions of complex analysis. Ann. Math. Artif. Intell., 36:303–318, 2002.
[26] M. Bronstein, R. M. Corless, J. H. Davenport, and D. J. Jeffrey. Algebraic properties of the Lambert W function from a result of Rosenlicht and of Liouville. Integral Transf. Spec. Funct., 19(10):709–712, 2008.
[28] G. França and A. LeClair. Transcendental equations satisfied by the individual zeros of Riemann zeta, Dirichlet and modular L-functions. Comm. Num. Theor. Phys., 9(1):1–50, 2015.
[29] S. A. Campbell. Stability and bifurcation in the harmonic oscillator with multiple, delayed feedback loops. Dynam. Contin. Discrete Impuls. Systems, 5:225–235, 1999.
[30] A. Cayley. A theorem on trees. Quart. J. Pure Appl. Math., 23:376–378, 1889.
[31] F. Chapeau-Blondeau and A. Monir. Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2. IEEE Trans. Signal Process., 50(9):2160–2165, 2002.
[32] I. Chatzigeorgiou. Bounds on the Lambert function and their application to the outage analysis of user cooperation. IEEE Communications Letters, 17(8):1505–1508, 2013.
[33] J.-J. Chen and M. Lotts. Structure and randomness of the discrete Lambert map. RHIT Undergrad. Math. J., 13(1):63–99, 2012.
[34] D. Clamond. Efficient resolution of the Colebrook equation. Ind. Eng. Chem. Res., 48:3665–3671, 2009.
[35] J. B. Conway. Functions of One Complex Variable (2nded.). Springer-Verlag, 1978.
[36] C. B. Corcino and R. B. Corcino. An asymptotic formula for the r-Bell numbers. Matimyás Mat., 24(1):9–18, 2001.
[37] C. B. Corcino, R. B. Corcino, and I. Mezö. Continued fraction expansions for the Lambert W function. Aequationes Math., 93(2):485–498, 2019.
[38] R. M. Corless, H. Ding, N. J. Higham, and D. J. Jeffrey. The solution of S * exp(S) = A is not always the Lambert W function of A. In ISSAC ‘07, pages 116–121.
[39] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W function. Adv. Comput. Math., 5:329–359, 1996.
[40] R. M. Corless, D. Jeffrey, S. M. Watt, and J. H. Davenport. “according to Abramowitz and Stegun” or arccoth needn't be uncouth. SIGSAM Bulletin, 34(2):58–65, 2000.
[41] R. M. Corless and D. J. Jeffrey. The unwinding number. SIGSAM Bulletin, 30(2):28–35, 1996.
[42] R. M. Corless and D. J. Jeffrey. Graphing elementary Riemann surfaces. SIGSAM Bulletin, 32(1):11–17, 1998.
[43] R. M. Corless and D. J. Jeffrey. On the Wright ω function. In Artificial Intelligence, Automated Reasoning, and Symbolic Computation, pages 76–89. Springer, 2002.
[44] R. M. Corless, D. J. Jeffrey, and D. E. Knuth. A sequence of series for the Lambert W function. In ISSAC ‘97, pages 197–204.
[45] S. R. Cranmer. New views of the solar wind with the Lambert W function. Am. J. Phys., 72(11):1397–1403, 2004.
[46] A. Cuyt, V. B. Petersen, B. Verdonk, H. Waadeland, and W. B. Jones. Handbook of Continued Fractions for Special Functions. Springer, 2008.
[47] N. G. de Bruijn. Asymptotic Methods in Analysis (2nded.). North-Holland Publishing Company, 1961.
[48] L. Debnath and D. Bhatta. Integral Transforms and Their Applications (2nded.). Chapman & Hall/CRC, 2016.
[49] A. Dingle and R. J. Fateman. Branch cuts in computer algebra. In Symbolic and Algebraic Computation, pages 250–257. ACM Press, 1994.
[50] A. E. Dubinov, I. D. Dubinova, and S. K. Sakov. The Lambert W Function and its Applications to Mathematical Problems of Physics. RFNC-VNIIEF: Sarov, Russia [in Russian]., 2006.
[51] I. D. Dubinova. Application of the Lambert W function in mathematical problems of plasma physics. Plasma Physics Reports, 30(10):872–877, 2004.
[52] I. D. Dubinova. Exact closed-form solutions of some nonlinear differential equations. Differ. Equ., 40(8):1195–1196, 2004.
[53] H. A. Einstein. Der hydraulische oder Profilradius. Schweizer Bauzeitung, 103(8):89–91, 1934.
[54] H. A. Einstein. Formulas for the transportation of bedload. Trans. ASCE, 107:561–597, 1942.
[55] G. Eisenstein. Entwicklung von ααα. J. Reine Angew. Math., 28:49–52, 1844.
[56] L. Euler. De formulis exponentialibus replicatis. Leonhardi Euleri Opera Omnia, Ser. 1, 268–297. (original date of publication: 1777. Eneström index: E.489).
[57] L. Euler. De serie Lambertina plurimisque eius insignibus proprietatibus. Leonhardi Euleri Opera Omnia, Ser. 1, 350–369. (original date of publication: 1779. Eneström index: E.532).
[58] S. R. Finch. Mathematical Constants. Cambridge University Press, 2003.
[59] R. A. Fisher. Statistical Methods and Scientific Inference. Oliver & Boyd, 1956.
[60] R. A. Fisher and L. H. C. Tippett. Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Phil. Soc., 24:180–190, 1928.
[61] J. G. Flores. The human thermal system. In Biomedical Engineering Principles. Marcel Dekker, 1976.
[62] F. N. Fritsch, R. E. Schafer, and W. P. Crowley. Algorithm 443: Solution of the transcendental equation wew = x. Communications of the ACM, 16:123–124, 1973.
[63] A. A. Frost. Delta-function model. I. Electronic energies of hydrogen-like atoms and diatomic molecules. J. Chem. Phys., 25(6):1150–1154, 1956.
[64] T. Fukushima. Precise and fast computation of Lambert W-functions without transcendental function evaluations. J. Comput. Appl. Math., 244:77–89, 2013.
[65] I. N. Galidakis. Lambert's W function and convergence of infinite exponentials in the space of quaternions. Complex Var. Elliptic Equ., 51(12):1129–1152, 2006.
[66] Fu-Ch. Gao, Li-X. Han, and K. Schilling. On the rate of convergence of iterated exponentials. J. Appl. Math. Comput., 39:89–96, 2012.
[67] A. Gasull, M. Jolis, and F. Utzet. On the norming constants for normal maxima. J. Math. Anal. Appl., 422:376–396, 2015.
[68] M. E. Ghitany, B. Atieh, and S. Nadarajah. Lindley distribution and its application. Math. Comput. Simulation, 78:493–506, 2008.
[69] M. Goličnik. On the Lambert W function and its utility in biochemical kinetics. Biochem. Engnrg. J., 63:116–123, 2012.
[70] Ch. T. Goudar. An explicit solution for progress curve analysis in systems characterized by endogenous substrate production. Microbial Ecology, 63:898–904, 2012.
[71] J. Gow. A Short History of Greek Mathematics. Cambridge University Press, 2010.
[72] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products (7thed.). Academic Press as an imprint of Elsevier, 2007.
[73] W. B. Gragg. Matrix interpretations and applications of the continued fraction algorithm. Rocky Mountain J. Math., 4:213–225, 1974.
[74] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, 1990.
[75] J. Guo. Exact procedure for Einstein-Johnson's sidewall correction in open channel flow. J. Hydraul. Eng., 143(4):6 p., 2017.
[76] K. Gustafson and T. Abe. The third boundary condition – Was it robin's? Math. Intell., 20(1):63–71, 1998.
[77] P. Hall. On the rate of convergence of normal extremes. J. Appl. Probab., 16(2):433–439, 1979.
[78] R. Hammer. Energy balance of stellar coronae, I. Methods and examples. Astrophys. J., 259:767–778, 1982.
[79] B. Hayes. Why W? American Scientist, 93:104–108, 2005.
[80] W. Hayman. A generalisation of Stirling's formula. J. Reine Angew. Math., 196:67–95, 1956.
[82] C. S. Holling. Some characteristics of simple types of predation and parasitism. Can. Ent. 91 (1959), 385-398., 91:385–398, 1959.
[83] A. Hoorfar and M. Hassani. Inequalities on the Lambert W function and hyperpower function. J. Ineq. Pure. Appl. Math., 9(2):Article 51, 2008.
[84] A. Houari. Additional applications of the Lambert W function in physics. Eur. J. Phys., 34:695–702, 2013.
[85] R. Iacono and J. P. Boyd. New approximations to the principal real-valued branch of the Lambert W-function. Adv. Comput. Math., 43:1403–1436, 2017.
[86] C. Jamilla, R. Mendoza, and I. Mezö. Solutions of neutral delay differential equations using a generalized Lambert W function. Appl. Math. Comp., 382:Article 125334, 2020.
[88] D. J. Jeffrey. Not seeing the roots for the branches: multivalued functions in computer algebra. SIGSAM Bulletin, 38(3):57–66, 2004.
[89] D. J. Jeffrey. Branch structure and implementation of Lambert W. Math. Comput. Sci., 11(3-4):341–350, 2017.
[90] D. J. Jeffrey, R. M. Corless, D. E. G. Hare, and D. E. Knuth. Sur l'inversion de yαey au moyen de nombres de Stirling associés. C. R. Math. Acad. Sci. Paris, 320:1449–1452, 1995.
[91] D. J. Jeffrey and J. E. Jankowski. Branch differences and Lambert W. In 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2014.
[92] D. C. Jenn. Applications of the Lambert W function in electromagnetics. IEEE Antenna and Propagation Magazine, 44(3):139–142, 2002.
[93] P. Jodrá. Computer generation of random variables with Lindley or Poisson -– Lindley distribution via the Lambert W function. Math. Comput. Simulation, 81:851–859, 2010.
[94] F. Johansson. Computing the Lambert W function in arbitrary-precision complex interval arithmetic. Numer. Algorithms, 83:221–242, 2020.
[95] J. W. Johnson. The importance of considering sidewall friction in bed-load investigations. Civ. Eng., 12(6):329–332, 1942.
[96] G. A. Jones and D. Singerman. Complex Functions. An Algebraic and Geometric Viewpoint. Cambridge University Press, 1987.
[97] W. B. Jones and W. J. Tron. Continued Fractions – Analytic Theory and Applications. Cambridge University Press, 1980.
[98] M. Josuat-Vergès. Derivatives of the tree function. Ramanujan J., 38:1–15, 2015.
[99] W. Kahan. Branch cuts for complex elementary functions, or much ado about nothing's sign bit. In the State of the Art in Numerical Analysis: Proceedings of the Joint IMA/SIAM Conference on the State of the Art in Numerical Analysis Held at the UN, pages 165–211. Clarendon Press, 1987.
[100] G. A. Kalugin and D. J. Jeffrey. Convergence in C of series for the Lambert W function. arXiv:1208.0754, 2012.
[101] G. A. Kalugin and D. J. Jeffrey. Series transformations to improve and extend convergence. In Lecture Notes in Computer Science, vol 6244. Springer, 2010.
[102] G. A. Kalugin and D. J. Jeffrey. Unimodal sequences show Lambert W is Bernstein. C. R. Math. Rep. Acad. Sci. Canada, 33(2):50–56, 2011.
[103] G. A. Kalugin, D. J. Jeffrey, R. M. Corless, and P. B. Borwein. Stieltjes and other integral representations for functions of Lambert W. Integral Transf. Spec. Funct., 23(8):581–593, 2012.
[104] W. Kapteyn. Recherches sur les fonctions de Fourier-Bessel. Ann. Sci. de l'École Norm. Sup., 3(10):91–120, 1893.
[106] C. Kittel. Introduction to Solid State Physics (8thed.). Wiley, 2004.
[107] R. A. Knoebel. Exponentials reiterated. Amer. Math. Monthly, 88:235–252, 1981.
[108] J. H. Lambert. Observationes variae in mathesin puram. Acta Helveticae physico-mathematico-anatomico-botanico-medica, Band III (1758), 128–168. Available online at http://www.kuttaka.org/ JHL/L1758c.html.
[109] J. H. Lambert. Observations analytiques. Nouveaux Mémoires de l'Académie Royale des Sciences de Berlin, année 1770/1772, 225–244. Available online at http://www.kuttaka.org/ JHL/L1770k.html.
[110] S. Lang. Complex Analysis (4thed.). Springer-Verlag, 1999.
[111] I. Langmuir. Positive ion currents from the positive column of mercury arcs. Science, 58:290–291, 1923.
[112] D. F. Lawden. Elliptic Functions and Applications. Springer-Verlag, 1989.
[113] B. Y. Levin. Distribution of Zeros of Entire Functions ((revised ed.). Amer. Math. Soc., 1972.
[114] B. Y. Levin. Lectures on Entire Functions. Amer. Math. Soc., 1996.
[115] D. V. Lindley. Fiducial distributions and Bayes' theorem. J. Royal Stat. Soc. Series B, 20:102–107, 1958.
[116] D. V. Lindley. Introduction to Probability and Statistics from a Bayesian Viewpoint, Part II: Inference. Cambridge Univ. Press, 1965.
[117] Yu Liu. Collisions of the discrete Lambert map. poster, Summer Undergraduate Math Research at Yale.
[118] L. Lovász. Combinatorial Problems and Exercises. North Holland, 1993.
[119] W. A. J. Luxemburg. Banach Function Spaces. PhD thesis, Technische Universiteit Delft, 1955.
[120] M. K. Mahmood and L. Anwar. Loops in digraphs of Lambert mapping modulo prime powers: enumerations and applications. Adv. Pure Math., 6:564–570, 2016.
[121] A. Maignan, L. Prabhat Reddy, S. Jeevanandam, P. C. Deshmukh, K. Roberts, N. Jisrawi, and S. R. Valluri. The electronic properties of graphene nanoribbons and the offset logarithm function. Materials Today: Proceedings (in press).
[122] R. B. Mann and T. Ohta. Exact solution for the metric and the motion of two bodies in (1 + 1)-dimensional gravity. Phys. Rev. D, 55(8):4723–4747, 1997.
[123] W. S. Massey. Algebraic Topology: An Introduction. Springer, 1990.
[124] M. W. McCoy and B. M. Bolker. Trait-mediated interactions: influence of prey size, density and experience. J. Animal Ecol., 77:478–586, 2008.
[125] S. G. Merzlyakov. Sharp estimates for the modulus of a canonical product. Sbornik: Mathematics, 207(2):238–266, 2016.
[126] I. Mezö. On the discrete r-Lambert map. unpublished manuscript.
[127] I. Mezö. The p-adic Lambert W function. arXiv:1801.00657, 2018.
[128] I. Mezö. The r-Bell numbers. J. Integer Seq., 14(1):Article 11.1.1, 2011.
[129] I. Mezö. On the structure of the solution set of a generalized Euler-Lambert equation. J. Math. Anal. Appl., 455:538–553, 2017.
[130] I. Mezö. Combinatorics and Number Theory of Counting Sequences. CRC Press, 2020.
[131] I. Mezö. The Riemann surface of the r-Lambert function. Acta Math. Hung., 164(2):439–450, 2021.
[132] I. Mezö and Á. Baricz. On the generalization of the Lambert W function. Trans. Amer. Math. Soc., 369(11):7917–7934, 2017.
[133] I. Mezö, C. B. Corcino, and R. B. Corcino. Resolution of the plane-symmetric Einstein – Maxwell fields with a generalization of the Lambert W function. J. Phys. Commun., 4:Article no. 085008, 2020.
[134] L. Michaelis and M. L. Menten. Die kinetik der invertinwirkung. Biochem. Z., 49:333–369, 1913.
[135] J. M. Mitchison and W. S. Vincent. A method of making synchronous cell cultures by density gradient centrifugation. In Cell synchrony. Studies in biosynthetic regulation. Academic Press, 1966.
[136] L. Moroni. The strange properties of the infinite power tower. arXiv:1908.05559, 2019.
[137] L. Moser and M. Wyman. An asymptotic formula for the Bell numbers. Trans. Royal Soc. Canada, 49:49–54, 1955.
[138] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. Rev. Modern Phys., 81:109–162, 2009.
[139] A. H. Nuttall. A conjectured definite integral. Problem 85-16. SIAM Review, 27:573, 1985.
[140] O. Olendski. Theory of the Robin quantum wall in a linear potential. I. Energy spectrum, polarization and quantum-information measures. Ann. Phys., 528(11-12):865–881, 2016.
[141] O. Olendski. Theory of the Robin quantum wall in a linear potential. II. Thermodynamic properties. Ann. Phys., 528(11-12):882–897, 2016.
[142] O. Olendski. Thermodynamic properties of the 1D Robin quantum well. Ann. Phys., 530(8):Article no. 1700325, 2018.
[143] E. W. Packel and D. S. Yuen. Projectile motion with resistance and the Lambert W function. College Math. J., 35(5):337–350, 2004.
[144] G. Pólya and G. Szegö. Aufgaben und Lehrsätze der Analysis I. Springer, 1925. Reprinted as Problems and Theorems in Analysis I, Springer, 1998.
[145] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes: The Art of Scientific Computing (3rded.). 2007.
[146] A. D. Rich and D. J. Jeffrey. Function evaluation on branch cuts. SIGSAM Bulletin, 116:25–27, 1996.
[147] K. U. Riemann. The Bohm criterion and sheath formation. J. Phys. D., 24:493–518, 1991.
[148] D. Rogers. Random search and insect population models. Journal of Animal Ecology, 41(2):369–383, 1972.
[149] S. Roman. Umbral Calculus. Academic Press, 1984.
[150] B. Rosenbaum and B. C. Rall. Fitting functional responses: Direct parameter estimation by simulating differential equations. Methods Ecol. Evol., 9:2076–2090, 2018.
[151] S. I. Rubinow. Introduction to Mathematical Biology. Wiley, 1975.
[152] B.-Z. A. Rubshtein, G. Ya. Grabarnik, M. A. Muratov, and Y. S. Pashkova. Foundations of Symmetric Spaces of Measurable Functions. Springer, 2016.
[153] H. Rutishauser. Anwendungen des Quotienten-Differenzen-Algorithmus. Z. Angew. Math. Phys., 5:496–508, 1954.
[154] H. Rutishauser. Der Quotienten-Differenzen-Algorithmus. Z. Angew. Math. Phys., 5:233–251, 1954.
[155] H. Rutishauser. Ein infinitesimales Analogon Zum Quotienten-Differenzen-Algorithmus. Arch. Math., 5:132–137, 1954.
[156] S. Saha and K. Bamba. The Lambert W function: A newcomer in the cosmology class? Z. Naturforsch., 75(1a):23–27, 2020.
[157] R. Schilling. Bernstein Functions: Theory and Applications. De Gruyter, 2010.
[158] S. Schnell and C. Mendoza. Closed form solution for time-dependent enzyme kinetics. J. Theor. Biol., 187:207–212, 1997.
[159] T. C. Scott, M. Aubert-Frécon, and J. Grotendorst. New approach for the electronic energies of the hydrogen molecular ion. Chem. Phys., 324:323–338, 2006.
[160] T. C. Scott, J. F. Babb, A. Dalgarno, and J. D. Morgan III. The calculation of exchange forces: General results and specific models. J. Chem. Phys., 99:2841–2854, 1993.
[161] T. C. Scott, J. F. Babb, A. Dalgarno, and J. D. Morgan III. Resolution of a paradox in the calculation of exchange forces for H2+. Chem. Phys. Lett., 203:175–183, 1993.
[162] T. C. Scott, R. Mann, and R. E. Martinez II. General relativity and quantum mechanics: towards a generalization of the Lambert W function. Appl. Algebra Engrg. Comm. Comput., 17:41–47, 2006.
[163] I. H. Segel. Enzyme Kinetics. John Wiley & Sons, 1993.
[164] D. L. Shell. On the convergence of infinite exponentials. Proc. Amer. Math. Soc., 13(5):678–681, 1962.
[165] H. Shinozaki. Lambert W Function Approach to Stability and Stabilization Problems for Linear Time-Delay Systems. PhD Thesis, Kyoto Institute of Technology, 2007.
[166] P. Song, H. J. Singer, and G. L. Siscoe (editors). Space Weather. In Geophysical Monograph Series. American Geophysical Union, 2001.
[167] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, 1972.
[168] S. M. Stewart. An analytic approach to projectile motion in a linear resisting medium. Internat. J. Math. Ed. Sci. Tech., 37(4):411–431, 2006.
[169] S. M. Stewart. On certain inequalities involving the Lambert W function. J. Ineq. Pure Appl. Math., 10(4):Article 96., 2009.
[170] S. M. Stewart. On the trajectories of projectiles depicted in early ballistic woodcuts. Eur. J. Phys., 33:149–166, 2012.
[171] H. U. Sverdrup. On conditions for the vernal blooming of phytoplankton. Journal du Conseil International Pour l'Exploration de la Mer, 18:287–295, 1953.
[172] P. L. Tchebycheff. Sur les fractions continues. J. Math. Pures Appl. Ser. II, 3:289–323, 1858.
[173] W. R. Thompson. La théorie mathématique de l'action des parasites entomophages et le facteur du hasard. Annls. Fac. Sci. Marseille, 2:69–89, 1924.
[174] W. J. Thron. Convergence of infinite exponentials with complex elements. Proc. Amer. Math. Soc., 8(6):1040–1043, 1957.
[175] S. R. Valluri, M. Gil, D. J. Jeffrey, and S. Basu. The Lambert W function and quantum statistics. J. Math. Phys., 50:Article 102103, 2009.
[176] S. R. Valluri, D. J. Jeffrey, and R. M. Corless. Some applications of the Lambert function to physics. Can. J. Phys., 78(9):823–831, 2000.
[177] J. Vanderlinde. Classical Electromagnetic Theory. John Wiley & Sons, 1993.
[178] H. Vazquez-Leal, M. A. Sandoval-Hernandez, J. L. Garcia-Gervacio, A. L. Herrera-May, and U. A. Filobello-Nino. PSEM approximations for both branches of Lambert W function with applications. Discrete Dyn. Nat. Soc., 2019:Article 8267951., 2019.
[179] E. B. Van Vleck. On the convergence of algebraic continued fractions whose coefficients have limiting values. Trans. Amer. Math. Soc., 5:253–262, 1904.
[180] Ž. Kovač, T. Platt, and S. Sathyendranath. Sverdrup meets Lambert: analytical solution for Sverdrup's critical depth. ICES Journal of Marine Science (2021), fsab013.
[181] H. S. Wall. Analytic Theory of Continued Fractions. Chelsea Publishing Company, 1948.
[182] G. N. Watson. A Treatise on the Theory of Bessel Functions (2nded.). Cambridge Univ. Press, 1944.
[183] H. Weyl. The Concept of a Riemann Surface (3rded.). Addison-Wesley, 1955.
[184] H. Wilf. The asymptotic behavior of the Stirling numbers of the first kind. J. Combin. Th. Ser. A, 64:344–349, 1993.
[185] E. M. Wright. The linear difference-differential equation with constant coefficients. Proc. Royal Soc. Edinburgh Ser A, 62:387–393, 1949.
[186] E. M. Wright. A non-linear difference-differential equation. J. Reine Angew. Math., 194:66–87, 1955.
[187] E. M. Wright. Solution of the equation zez = a. Proc. Roy. Soc. Edinburgh Ser. A, 65:193–203, 1959.
[188] E. M. Wright. The number of connected sparsely edged graphs. J. Graph Theory, 1:317–330, 1977.
[189] S. Yi, P. W. Nelson, and A. G. Ulsoy. Time-Delay Systems: Analysis and Control Using the Lambert W Function. World Scientific, 2010.
[190] C.-Y. Zhu and A. Waldo. The discrete Lambert map. RHIT Undergrad. Math. J., 16(2):181–194, 2015.
[191] D. Zirlin. Problems Motivated by Cryptology: Counting Fixed Points and Two-cycles of the Discrete Lambert Map. BsC Thesis, Mount Holyoke College, 2015.