1. J. M. Harlow, “Passage of an Iron Rod through the Head. 1848,” Journal of Neuropsychiatry and Clinical Neuroscience 11, no. 2 (1999): 281–283.
2. C. V. Rice, “Review of Paul Lauterbur and the Invention of MRI,” Journal of Chemical Education 91, no. 5 (2014): 626–627.
3. D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet, “MR Imaging of Intravoxel Incoherent Motions: Application to Diffusion and Perfusion in Neurologic Disorders,” Radiology 161, no. 2 (1986): 401–407.
4. P. J. Basser, J. Mattiello, and D. LeBihan, “MR Diffusion Tensor Spectroscopy and Imaging,” Biophysical Journal 66, no. 1 (1994): 259–267.
5. R. Xue, P. C. van Zijl, B. J. Crain, M. Solaiyappan, and S. Mori, “In Vivo Three-Dimensional Reconstruction of Rat Brain Axonal Projections by Diffusion Tensor Imaging,” Magnetic Resonance in Medicine 42, no. 6 (1999): 1123–1127.
6. V. J. Wedeen, D. L. Rosene, R. Wang, G. Dai, F. Mortazavi, P. Hagmann, et al., “The Geometric Structure of the Brain Fiber Pathways,” Science 335, no. 6076 (2012): 1628–1634.
7. D. K. Jones, ed., Diffusion MRI (New York: Oxford University Press, 2011).
8. M. E. Raichle and G. M. Shepherd, Angelo Mosso’s Circulation of Blood in the Human Brain (Oxford: Oxford University Press, 2014).
9. S. S. Kety and C. F. Schmidt, “The Determination of Cerebral Blood Flow in Man by the Use of Nitrous Oxide in Low Concentrations,” American Journal of Physiology 143 (1945): 53–66.
10. N. A. Lassen, D. H. Ingvar, and E. Skinhoj, “Brain Function and Blood Flow,” Scientific American 239, no. 4 (1978): 62–71.
11. F. F. Jobsis, “Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters,” Science 198, no. 4323 (1977): 1264–1267.
12. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, et al., “A Novel Method for Fast Imaging of Brain Function, Non-invasively, with Light,” Optics Express 2, no. 10 (1998): 411–423.
13. E. Boto, A. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, et al., “Moving Magnetoencephalography towards Real-World Applications with a Wearable System,” Nature 555 (2018): 657–661.
14. B. Chance, Y. Nakase, M. Bond, J. S. Leigh Jr., and G. McDonald, “Detection of 31P Nuclear Magnetic Resonance Signals in Brain by In Vivo and Freeze-Trapped Assays,” Proceedings of the National Academy of Sciences of the United States of America 75, no. 10 (1978): 4925–4929.
15. J. J. Ackerman, T. H. Grove, G. G. Wong, D. G. Gadian, and G. K. Radda, “Mapping of Metabolites in Whole Animals by 31P NMR Using Surface Coils,” Nature 283, no 5743 (1980): 167–170.
1. R. A. Poldrack, T. O. Laumann, O. Koyej, B. Gregory, A. Hover, M. Y. Chen, et al., “Long-term Neural and Physiological Phenotyping of a Single Human,” Nature Communications 6 (2015): 8885.
2. C. S. Roy and C. S. Sherrington, “On the Regulation of the Blood-supply of the Brain,” Journal of Physiology 11 (1890): 85–108.
3. L. Pauling and C. D. Coryell, “The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin,” Proceedings of the National Academy of Sciences of the United States of America 22, no. 4 (1936): 210–216.
4. K. R. Thulborn, “My Starting Point: The Discovery of an NMR Method for Measuring Blood Oxygenation Using the Transverse Relaxation Time of Blood Water,” NeuroImage 62, no. 2 (2012): 589–593.
5. P. T. Fox and M. E. Raichle, “Focal Physiological Uncoupling of Cerebral Blood Flow and Oxidative Metabolism during Somatosensory Stimulation in Human Subjects,” Proceedings of the National Academy of Sciences of the United States of America 83 (1986): 1140–1144.
6. S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain Magnetic-Resonance-Imaging with Contrast Dependent on Blood Oxygenation,” Proceedings of the National Academy of Sciences of the United States of America 87, no. 24 (1990): 9868–9872.
7. R. Turner, D. Lebihan, C. T. W. Moonen, D. Despres, and J. Frank, “Echo-Planar Time Course MRI of Cat Brain Oxygenation Changes,” Magnetic Resonance in Medicine 22, no. 1 (1991): 159–166.
8. J. W. Belliveau, D. N. Kennedy, R. C. McKinstry, B. R. Buchbinder, R. M. Weisskoff, M. S. Cohen, et al., “Functional Mapping of the Human Visual-Cortex by Magnetic-Resonance-Imaging,” Science 254, no. 5032 (1991): 716–719.
9. P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky, and J. S. Hyde, “Time Course EPI of Human Brain Function during Task Activation, Magnetic Resonance in Medicine 25, no. 2 (1992): 390–397; K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, et al., “Dynamic Magnetic-Resonance-Imaging of Human Brain Activity during Primary Sensory Stimulation, Proceedings of the National Academy of Sciences of the United States of America 89, no. 12 (1992): 5675–5679; S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, et al., “Intrinsic Signal Changes Accompanying Sensory Stimulation—Functional Brain Mapping with Magnetic-Resonance-Imaging,” Proceedings of the National Academy of Sciences of the United States of America 89, no. 13 (1992): 5951–5955.
10. P. A. Bandettini, A. Jesmanowicz, E. C. Wong, and J. S. Hyde. “Processing Strategies for Time-Course Data Sets in Functional MRI of the Human Brain,” Magnetic Resonance in Medicine 30, no. 2 (1993): 161–173.
11. B. Biswal, F. Z. Yetkin, V. M. Haughton, J. S. Hyde, “Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar MRI,” Magnetic Resonance in Medicine 34, no. 4 (1995): 537–541.
12. E. S. Finn, X. Shen, D. Scheinost, M. D. Rosenberg, J. Huang, M. M. Chun, et al., “Functional Connectome Fingerprinting: Identifying Individuals Using Patterns of Brain Connectivity, Nature Neuroscience 18, no. 11 (2015): 1664–1671.
13. M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional Connectivity in the Resting Brain: A Network Analysis of the Default Mode Hypothesis,” Proceedings of the National Academy of Sciences of the United States of America 100, no. 1 (2003): 253–258.
14. P. F. Liddle, “Is Disordered Cerebral Connectivity the Core Problem in Schizophrenia?,” NeuroScience News 41, no 1 (2001): 62–73.
15. A. B. Waites, R. S. Briellmann, M. M. Saling, D. F. Abbott, and G. D. Jackson, “Functional Connectivity Networks Are Disrupted in Left Temporal Lobe Epilepsy,” Annals of Neurology 59, no. 2 (2006): 335–343; S. J. Li, B. Biswal, Z. Li, R. Risinger, C. Rainey, J. K. Cho, et al., “Cocaine Administration Decreases Functional Connectivity in Human Primary Visual and Motor Cortex as Detected by Functional MRI,” Magnetic Resonance in Medicine 43, no. 1 (2000): 45–51.
16. S. J. Li, B. Biswal, Z. Li, R. Risinger, C. Rainey, J. K. Cho, et al., “Cocaine Administration Decreases Functional Connectivity in Human Primary Visual and Motor Cortex as Detected by Functional MRI,” Magnetic Resonance in Medicine 43, no. 1 (2000): 45–51.
17. A. Anand, Y. Li, Y. Wang, J. Wu, S. Gao, L. Bukhari, et al., “Activity and Connectivity of Brain Mood Regulating Circuit in Depression: A Functional Magnetic Resonance Study,” Biological Psychiatry 57, no. 10 (2005): 1079–1088.
18. D. J. Watts and S. H. Strogatz, “Collective Dynamics of ‘Small-World’ Networks,” Nature 393, no. 6684 (1998): 440–442.
19. D. Meunier, R. Lambiotte, and E. T. Bullmore, “Modular and Hierarchically Modular Organization of Brain Networks,” Frontiers in Neuroscience 4 (2010): 200.
20. R. L. Buckner, J. Sepulcre, T. Talukdar, F. M. Krienen, H. Liu, T. Hedden, et al., “Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer’s Disease,” Journal of Neuroscience 29, no. 6 (2009): 1860–1873.
21. Y. Fan, F. Shi, J. K. Smith, W. Lin, J. H. Gilmore, and D. Shen, “Brain Anatomical Networks in Early Human Brain Development,” NeuroImage 54, no. 3 (2011): 1862–1871.
22. K. Wu, Y. Taki, K. Sato, S. Kinomura, R. Goto, K. Okada, et al., “Age-Related Changes in Topological Organization of Structural Brain Networks in Healthy Individuals,” Human Brain Mapping 33, no. 3 (2012): 552–568.
23. Z. Yao, Y. Zhang, L. Lin, Y. Zhou, C. Xu, and T. Jiang, “Abnormal Cortical Networks in Mild Cognitive Impairment and Alzheimer’s Disease,” PLoS Computational Biology 6, no. 11 (2010): e1001006.
24. R. M. Hutchison, T. Womelsdorf, E. A. Allen, P. A. Bandettini, V. D. Calhoun, M. Corbetta, et al., “Dynamic Functional Connectivity: Promise, Issues, and Interpretations,” NeuroImage 80 (2013): 360–378.
25. M. S. Cetin, J. M. Houck, B. Rashid, O. Agacoglu, J. M. Stephen, J. Sui, et al., “Multimodal Classification of Schizophrenia Patients with MEG and fMRI Data Using Static and Dynamic Connectivity Measures,” Frontiers in Neuroscience 10 (2016): 466.
26. C. Chang and G. H. Glover, “Time-Frequency Dynamics of Resting-State Brain Connectivity Measured with fMRI,” NeuroImage 50, no. 1 (2010): 81–98.
1. B. R. Rosen, J. W. Belliveau, J. M. Vevea, and T. J. Brady, “Perfusion Imaging with NMR Contrast Agents,” Magnetic Resonance in Medicine 14, no. 2 (1990): 249–265.
2. J. W. Belliveau, D. N. Kennedy, R. C. McKinstry, B. R. Buchbinder, R. M. Weisskoff, M. S. Cohen, et al., “Functional Mapping of the Human Visual-Cortex by Magnetic-Resonance-Imaging,” Science 254, no. 5032 (1991): 716–719.
3. K. R. Thulborn, J. C. Waterton, P. M. Matthews, and G. K. Radda, “Oxygenation Dependence of the Transverse Relaxation Time of Water Protons in Whole Blood at High Field,” Biochimica et Biophysica Acta 714, no. 2 (1982): 265–270.
4. S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain Magnetic-Resonance-Imaging with Contrast Dependent on Blood Oxygenation,” Proceedings of the National Academy of Sciences of the United States of America 87, 24 (1990): 9868–9872.
5. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, et al., “Dynamic Magnetic-Resonance-Imaging of Human Brain Activity during Primary Sensory Stimulation,” Proceedings of the National Academy of Sciences of the United States of America 89, no. 12 (1992): 5675–5679; S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, et al., “Intrinsic Signal Changes Accompanying Sensory Stimulation—Functional Brain Mapping with Magnetic-Resonance-Imaging,” Proceedings of the National Academy of Sciences of the United States of America 89, no. 13 (1992): 5951–5955; P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky, and J. S. Hyde, “Time Course EPI of Human Brain Function during Task Activation,” Magnetic Resonance in Medicine 25, no. 2 (1992): 390–397.
6. S. Ogawa, T. M. Lee, A. S. Nayak, and P. Glynn, “Oxygenation-Sensitive Contrast in Magnetic-Resonance Image of Rodent Brain at High Magnetic-Fields,” Magnetic Resonance in Medicine 14, no. 1 (1990): 68–78.
7. R. S. Menon, S. Ogawa, J. P. Strupp, and K. Ugurbil. “Ocular Dominance in Human V1 Demonstrated by Functional Magnetic Resonance Imaging,” Journal of Neurophysiology 77, no. 5 (1997): 2780–2787; K. Cheng, R. A. Waggoner, and K. Tanaka, “Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging,” Neuron 32, no. 2 (2001): 359–374; E. Yacoub, N. Harel, and K. Uǧurbil, “High-Field fMRI Unveils Orientation Columns in Humans,” Proceedings of the National Academy of Sciences of the United States of America 105, no. 30 (2008): 10607–1061.
8. J. R. Polimeni, B. Fischl, D. N. Greve, and L. L. Wald, “Laminar Analysis of 7T BOLD Using an Imposed Spatial Activation Pattern in Human V1,” NeuroImage 52, no. 4 (2010): 1334–1346.
9. R. S. Menon, D. C. Luknowsky, and J. S. Gati, “Mental Chronometry Using Latency-Resolved Functional MRI,” Proceedings of the National Academy of Sciences of the United States of America 95, no. 18 (1998): 10902–10907.
10. N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann, “Neurophysiological Investigation of the Basis of the fMRI Signal,” Nature 412, no. 6843 (2001): 150–157.
11. L. D. Lewis, K. Setsompop, B. R. Rosen, and J. R. Polimeni, “Fast fMRI Can Detect Oscillatory Neural Activity in Humans,” Proceedings of the National Academy of Sciences of the United States of America 113, no. 43 (2016): E6679-E6685.
1. M. NessAiver, “All You Really Need to Know about MRI Physics.”
2. K. Setsompop, J. Cohen-Adad, B. A. Gagoski, T. Raij, A. Yendiki, B. Keil, et al., “Improving Diffusion MRI Using Simultaneous Multi-slice Echo Planar Imaging,” NeuroImage 63, no. 1 (2012): 569–580.
3. D. A. Feinberg and K. Setsompop, “Ultra-fast MRI of the Human Brain with Simultaneous Multi-slice Imaging,” Journal of Magnetic Resonance 229 (2013): 90–100; D. A. Feinberg and E. Yacoub, “The Rapid Development of High Speed, Resolution and Precision in fMRI,” NeuroImage 62, no. 2 (2012): 720–725.
4. E. Yacoub, N. Harel, and K. Uǧurbil, “High-Field fMRI Unveils Orientation Columns in Humans,” Proceedings of the National Academy of Sciences of the United States of America 105, no. 30 (2008): 10607–10612.
5. F. H. Lin, K. W. Tsai, Y. H. Chu, T. Witzel, A. Nummenmaa, T. Raij, et al., “Ultrafast Inverse Imaging Techniques for fMRI,” NeuroImage 62, no. 2 (2012): 699–705.
6. A. W. Song, E. C. Wong, and J. S. Hyde, “Echo-Volume Imaging,” Magnetic Resonance in Medicine 32, no. 5 (1994): 668–671.
7. P. Kundu, N. D. Brenowitz, V. Voon, Y. Worbe, P. E. Vertes, S. J. Inati, et al., “Integrated Strategy for Improving Functional Connectivity Mapping Using Multiecho fMRI,” Proceedings of the National Academy of Sciences of the United States of America 110, no. 40 (2013): 16187–16192; P. Kundu, S. J. Inati, J. W. Evans, W. M. Luh, and P. A. Bandettini, “Differentiating BOLD and Non-BOLD Signals in fMRI Time Series Using Multi-echo EPI,” NeuroImage 60, no. 3 (2012):1759–1570.
8. J. Hennig, “Functional Spectroscopy to No-Gradient fMRI,” NeuroImage 62, no. 2 (2012): 693–698.
9. D. K. Sodickson, M. A. Griswold, and P. M. Jakob, “SMASH Imaging,” Magnetic Resonance Imaging Clinics of North America 7, no. 2 (1999): 237–254, vii–viii.
10. K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE: Sensitivity Encoding for Fast MRI,” Magnetic Resonance in Medicine 42, no. 5 (1999): 952–962.
11. Feinberg and Setsompop, “Ultra-fast MRI of the Human Brain with Simultaneous Multi-slice Imaging.”
12. M. F. Glasser, S. M. Smith, D. S. Marcus, J. L. Andersson, E. J. Auerbach, T. E. Behrens, et al., “The Human Connectome Project’s Neuroimaging Approach,” Nature Neuroscience 19, no. 9 (2016): 1175–1187.
1. E. Amaro Jr. and G. J. Barker, “Study Design in fMRI: Basic Principles, Brain and Cognition 60, no. 3 (2006): 220–232.
2. S. M. Courtney, L. G. Ungerleider, K. Keil, and J. V. Haxby, “Object and Spatial Visual Working Memory Activate Separate Neural Systems in Human Cortex,” Cerebral Cortex 6, no. 1 (1996): 39–49.
3. R. Birn, P. Bandettini, R. Cox, and R. Shaker, “Event-Related fMRI of Tasks Involving Brief Motion, Human Brain Mapping 7, no. 2 (1999): 106–114.
4. A. M. Blamire, S. Ogawa, K. Ugurbil, D. Rothman, G. McCarthy, J. M. Ellermann, et al., “Dynamic Mapping of the Human Visual-Cortex by High-Speed Magnetic-Resonance-Imaging,” Proceedings of the National Academy of Sciences of the United States of America 89, no. 22 (1992): 11069–11073.
5. R. L. Buckner, P. A. Bandettini, K. M. O’Craven, R. L. Savoy, S. E. Petersen, M. E. Raichle, et al., “Detection of Cortical Activation during Averaged Single Trials of a Cognitive Task Using Functional Magnetic Resonance Imaging, Proceedings of the National Academy of Sciences of the United States of America 93, no. 25 (1996):14878–14883; G. McCarthy, M. Luby, J. Gore, and P. GoldmanRakic, “Infrequent Events Transiently Activate Human Prefrontal and Parietal Cortex as Measured by Functional MRI,” Journal of Neurophysiology 77, no. 3 (1997): 1630–1634.
6. P. Bandettini and R. Cox, “Event-Related fMRI Contrast When Using Constant Interstimulus Interval: Theory and Experiment,” Magnetic Resonance in Medicine 43, no. 4 (2000): 540–548.
7. R. M. Birn, R. W. Cox, and P. A. Bandettini, “Detection versus Estimation in Event-Related fMRI: Choosing the Optimal Stimulus Timing,” NeuroImage 15, no. 1 (2002): 252–264.
8. S. A. Engel, D. E. Rumelhart, B. A. Wandell, A. T. Lee, G. H. Glover, E. J. Chichilnisky, et al., “fMRI of Human Visual-Cortex,” Nature 369, no. 6481 (1994): 525.
9. K. Grill-Spector and R. Malach, “fMR-Adaptation: A Tool for Studying the Functional Properties of Human Cortical Neurons,” Acta Psychologica 107, no. 1–3 (2001): 293–321.
10. A. G. Huth, T, Lee , S. Nishimoto, N. Y. Bilenko, A. T. Vu, and J. L. Gallant, “Decoding the Semantic Content of Natural Movies from Human Brain Activity,” Frontiers in Systems Neuroscience 10 (2016): 81; A. G. Huth, W. A. de Heer, T. L. Griffiths, F. E. Theunissen, and J. L. Gallant, “Natural Speech Reveals the Semantic Maps That Tile Human Cerebral Cortex,” Nature 532, no. 7600, (2016): 453–458; A. G. Huth, S. Nishimoto, A. T. Vu, and J. L. Gallant, “A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain,” Neuron 76, no. 6 (2012): 1210–1224; K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant, “Identifying Natural Images from Human Brain Activity,” Nature 452, no. 7185 (2008): 352–355.
11. C. Chu, Y. Ni, G. Tan, C. J. Saunders, and J. Ashburner, “Kernel Regression for fMRI Pattern Prediction,” NeuroImage 56, no. 2 (2011): 662–673.
12. U. Hasson, Y. Nir, I. Levy, G. Fuhrmann, and R. Malach, “Intersubject Synchronization of Cortical Activity during Natural Vision,” Science 303, no. 5664 (2004): 1634–1640; U. Hasson, O. Furman, D. Clark, Y. Dudai, and L. Davachi, “Enhanced Intersubject Correlations during Movie Viewing Correlate with Successful Episodic Encoding,” Neuron 57, no. 3 (2008): 452–462.
13. B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar MRI,” Magnetic Resonance in Medicine 34, no. 4 (1995): 537–541.
14. R. C. Craddock, G. A. James, P. E. Holtzheimer 3rd, X. P. Hu, and H. S. Mayberg, “A Whole Brain fMRI Atlas Generated via Spatially Constrained Spectral Clustering,” Human Brain Mapping 33, no. 8 (2012): 1914–1928.
15. M. Bianciardi, M. Fukunaga, P. van Gelderen, S. G. Horovitz, J. A. de Zwart, K. Shmueli, et al., “Sources of Functional Magnetic Resonance Imaging Signal Fluctuations in the Human Brain at Rest: A 7 T Study,” Magnetic Resonance Imaging (2009).
16. K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The Impact of Global Signal Regression on Resting State Correlations: Are Anti-correlated Networks Introduced?,” NeuroImage 44, no. 3 (2009): 893–905.
17. C. W. Wong, V. Olafsson, O. Tal, and T. T. Liu, “The Amplitude of the Resting-State fMRI Global Signal Is Related to EEG Vigilance Measures,” NeuroImage 83 (2013): 983–990.
18. R. W. Cox, A. Jesmanowicz, and J. S. Hyde, “Real-Time Functional Magnetic-Resonance-Imaging,” Magnetic Resonance in Medicine 33, no. 2 (1995): 230–236.
19. B. Sorger, B. Dahmen, J. Reithler, O. Gosseries, A. Maudoux, S. Laureys, et al., “Another Kind of ‘BOLD Response’: Answering Multiple-Choice Questions via Online Decoded Single-Trial Brain Signals,” Progress in Brain Research 177 (2009): 275–292.
20. A. M. Owen, “Is Anybody in There?,” Scientific American 310, no. 5 (2014): 52–57.
21. R. C. DeCharms, F. Maeda, G. H. Glover, D. Ludlow, J. M. Pauly, D. Soneji, et al., “Control over Brain Activation and Pain Learned by Using Real-Time Functional MRI,” Proceedings of the National Academy of Sciences of the United States of America 102, no. 51 (2005): 18626–18631.
22. D. E. Linden, I. Habes, S. J. Johnston, S. Linden, R. Tatineni, L. Subramanian, et al., “Real-Time Self-Regulation of Emotion Networks in Patients with Depression,” PLOS ONE 7, no. 6 (2012): e38115.
1. J. V. Haxby, M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, and P. Pietrini, “Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex,” Science 293, no. 5539 (2001): 2425–2430.
2. N. Kriegeskorte, R. Goebel, and P. Bandettini, “Information-Based Functional Brain Mapping,” Proceedings of the National Academy of Sciences of the United States of America 103, no. 10 (2006): 3863–3868.
3. Y. Kamitani and F. Tong, “Decoding the Visual and Subjective Contents of the Human Brain,” Nature Neuroscience 8, no. 5 (2005): 679–685.
4. N. Kriegeskorte, M. Mur, D. A. Ruff, R. Kiani, J. Bodurka, H. Esteky, et al., “Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey,” Neuron 60, no. 6 (2008): 1126–1141.
5. A. G. Huth, S. Nishimoto, A. T. Vu, and J. L. Gallant, “A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain,” Neuron 76, no. 6 (2012): 1210–1224.
6. A. Shmuel and D. Leopold, “Neuronal Correlates of Spontaneous Fluctuations in fMRI Signals in Monkey Visual Cortex: Implications for Functional Connectivity at Rest,” Human Brain Mapping 29 (2008): 751–761.
1. C. S. Roy and C. S. Sherrington, “On the Regulation of the Blood-Supply of the Brain. Journal of Physiology 11 (1890): 85–108.
2. P. T. Fox and M. E. Raichle, “Focal Physiological Uncoupling of Cerebral Blood Flow and Oxidative Metabolism during Somatosensory Stimulation in Human Subjects,” Proceedings of the National Academy of Sciences of the United States of America 83 (1986): 1140–1144.
3. P. T. Fox, “The Coupling Controversy,” NeuroImage 62, no. 2 (2012): 594–601.
4. S. Ogawa, T. M. Lee, A. S. Nayak, and P. Glynn, “Oxygenation-Sensitive Contrast in Magnetic-Resonance Image of Rodent Brain at High Magnetic-Fields,” Magnetic Resonance in Medicine 14, no. 1 (1990): 68–78.
5. R. S. Menon, “The Great Brain versus Vein Debate,” NeuroImage 62, no. 2 (2012): 970–974.
6. S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, et al., “Intrinsic Signal Changes Accompanying Sensory Stimulation—Functional Brain Mapping with Magnetic-Resonance-Imaging,” Proceedings of the National Academy of Sciences of the United States of America 89, no. 13 (1992): 5951–5955.
7. R. S. Menon, S. Ogawa, D. W. Tank, and K. Ugurbil, “Tesla Gradient Recalled Echo Characteristics of Photic Stimulation-Induced Signal Changes in the Human Primary Visual-Cortex,” Magnetic Resonance in Medicine 30, no. 3 (1993): 380–386.
8. E. Yacoub, N. Harel, and K. Uǧurbil, “High-Field fMRI Unveils Orientation Columns in Humans,” Proceedings of the National Academy of Sciences of the United States of America 105, no. 30 (2008): 10607–10612.
9. L. Huber, D. A. Handwerker, D. C. Jangraw, G. Chen, A. Hall, C. Stuber, et al., “High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1,” Neuron 96, no. 6 (2017): 1253–1263 e7.
10. R. M. Birn and P. A. Bandettini, “The Effect of Stimulus Duty Cycle and ‘Off’ Duration on BOLD Response Linearity,” NeuroImage 27, no. 1 (2005): 70–82.
11. N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann, “Neurophysiological Investigation of the Basis of the fMRI Signal,” Nature 412, no. 6843 (2001): 150–157.
12. X. P. Hu, T. H. Le, and K. Ugurbil, “Evaluation of the Early Response in fMRI in Individual Subjects Using Short Stimulus Duration,” Magnetic Resonance in Medicine 37, no. 6 (1997): 877–884; X. Hu and E. Yacoub, “The Story of the Initial Dip in fMRI,” NeuroImage 62, no. 2 (2012): 1103–1108.
13. R. B. Buxton, “Dynamic Models of BOLD Contrast,” NeuroImage 62, no. 2 (2012): 953–961.
14. P. C. van Zijl, J. Hua, and H. Lu, “The BOLD Post-Stimulus Undershoot, One of the Most Debated Issues in fMRI,” NeuroImage 62, no. 2 (2012): 1092–1102.
15. A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. Hillman, S. N. Narayanan, et al., “Suppressed Neuronal Activity and Concurrent Arteriolar Vasoconstriction May Explain Negative Blood Oxygenation Level-Dependent Signal,” The Journal of Neuroscience 27, no. 16 (2007): 4452–4459.
16. G. Krueger and C. Granziera, “The History and Role of Long Duration Stimulation in fMRI,” NeuroImage 62, no. 2 (2012): 1051–1055.
17. J. Frahm, G. Kruger, K. D. Merboldt, and A. Kleinschmidt, “Dynamic Uncoupling and Recoupling of Perfusion and Oxidative Metabolism during Focal Brain Activation in Man, Magnetic Resonance in Medicine 35, no. 2 (1996): 143–148.
18. P. A. Bandettini, K. K. Kwong, T. L. Davis, R. B. H. Tootell, E. C. Wong, P. T. Fox, et al., “Characterization of Cerebral Blood Oxygenation and Flow Changes during Prolonged Brain Activation, Human Brain Mapping 5, no. 2 (1997): 93–109.
19. P. A. Bandettini, “The Temporal Resolution of Functional MRI,” in Functional MRI, ed. C. Moonen and P. Bandettini, 205–220 (New York: Springer-Verlag, 1999); R. S. Menon, D. C. Luknowsky, and J. S. Gati, “Mental Chronometry Using Latency-Resolved Functional MRI,” Proceedings of the National Academy of Sciences of the United States of America 95, no. 18 (1998):10902–10907; R. S. Menon, J. S. Gati, B. G. Goodyear, D. C. Luknowsky, and C. G. Thomas, “Spatial and Temporal Resolution of Functional Magnetic Resonance Imaging,” Biochemistry and Cell Biology 76, no. 2–3 (1998): 560–571; P. S. F. Bellgowan, Z. S. Saad, and P. A. Bandettini, “Understanding Neural System Dynamics through Task Modulation and Measurement of Functional MRI Amplitude, Latency, and Width,” Proceedings of the National Academy of Sciences of the United States of America 100, no. 3 (2003): 1415–1419.
20. M. Misaki, W. M. Luh, and P. A. Bandettini, “Accurate Decoding of Sub-TR Timing Differences in Stimulations of Sub-voxel Regions from Multi-voxel Response Patterns,” NeuroImage 66 (2013): 623–633.
21. E. Formisano, D. E. J. Linden, F. Di Salle, L. Trojano, F. Esposito, A. T. Sack, et al., “Tracking the Mind’s Image in the Brain I: Time-resolved fMRI during Visuospatila Mental Imagery,” Neuron 35, no. 1 (2002): 185–194.
22. L. D. Lewis, K. Setsompop, B. R. Rosen, and J. R. Polimeni, “Fast fMRI Can Detect Oscillatory Neural Activity in Humans,” Proceedings of the National Academy of Sciences of the United States of America 113, no. 43 (2016): E6679–E6685.
23. K. McKiernan, B. D’Angelo, J. K. Kucera-Thompson, J. Kaufman, and J. Binder, “Task-Induced Deactivation Correlates with Suspension of Task-Unrelated Thoughts: An fMRI Investigation,” Journal of Cognitive Neuroscience (2002): 96.
24. R. L. Buckner, “The Serendipitous Discovery of the Brain’s Default Network,” NeuroImage 62, no. 2 (2012): 1137–1145.
25. A. Shmuel, E. Yacoub, J. Pfeuffer, P. F. Van de Moortele, G. Adriany, X. P. Hu, et al., “Sustained Negative BOLD, Blood Flow and Oxygen Consumption Response and Its Coupling to the Positive Response in the Human Brain,” Neuron 36, 6 (2002): 1195–1210.
26. A. Shmuel and D. Leopold, “Neuronal Correlates of Spontaneous Fluctuations in fMRI Signals in Monkey Visual Cortex: Implications for Functional Connectivity at Rest,” Human Brain Mapping 29 (2008): 751–761.
27. Y. Ma, M. A. Shaik, M. G. Kozberg, S. H. Kim, J. P. Portes, D. Timerman, et al., “Resting State Hemodynamics Are Spatiotemporally Coupled to Synchronized and Symmetric Neural Activity in Excitatory Neurons,” Proceedings of the National Academy of Sciences of the United States of America 113, no. 52 (2016): E8463–E71.
28. S. M. Smith, T. E. Nichols, D. Vidaurre, A. M. Winkler, T. E. Behrens, M. F. Glasser, et al., “A Positive-Negative Mode of Population Covariation Links Brain Connectivity, Demographics and Behavior,” Nature Neuroscience 18, no. 11 (2015): 1565–1567.
29. C. M. Bennett, A. A. Baird, M. B. Miller, and G. L. Wolford, “Neural Correlates of Interspecies Perspective Taking in the Post-mortem Atlantic Salmon: An Argument for Proper Multiple Comparisons Correction,” presented at the 15th Annual Meeting of the Organization for Human Brain Mapping. San Francisco, CA, 2009.
30. J. Gonzalez-Castillo, Z. S. Saad, D. A. Handwerker, S. J. Inati, N. Brenowitz, and P. A. Bandettini, “Whole-Brain, Time-Locked Activation with Simple Tasks Revealed Using Massive Averaging and Model-Free Analysis,” Proceedings of the National Academy of Sciences of the United States of America 109, no. 14 (2012): 5487–5492.
31. E. Vul, C. Harris, P. Winkielman, and H. Pashler, “Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition,” Perspectives on Psychological Science 4, no. 3 (2009): 274–290.
32. M. D. Fox, D. Zhang, A. Z. Snyder, and M. E. Raichle, “The Global Signal and Observed Anticorrelated Resting State Brain Networks,” Journal of Neurophysiology 101, no. 6 (2009): 3270–3283; M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, “The Human Brain Is Intrinsically Organized into Dynamic, Anticorrelated Functional Networks,” Proceedings of the National Academy of Sciences of the United States of America 102, no. 27 (2005): 9673–9678.
33. K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The Impact of Global Signal Regression on Resting State Correlations: Are Anti-correlated Networks Introduced?,” NeuroImage 44, no. 3 (2009): 893–905.
34. Z. S. Saad, S. J. Gotts, K. Murphy, G. Chen, H. J. Jo, A. Martin, et al., “Trouble at Rest: How Correlation Patterns and Group Differences Become Distorted after Global Signal Regression,” Brain Connectivity 2, no. 1 (2012): 25–32.
35. C. W. Wong, V. Olafsson, O. Tal, and T. T. Liu, “The Amplitude of the Resting-State fMRI Global Signal Is Related to EEG Vigilance Measures,” NeuroImage 83 (2013): 983–990.
36. T. T. Liu, A. Nalci, and M. Falahpour, “The Global Signal in fMRI: Nuisance or Information?,” NeuroImage 150 (2017): 213–229.
37. M. Chen, J. Han, X. Hu, X. Jiang, L. Guo, and T. Liu, “Survey of Encoding and Decoding of Visual Stimulus via FMRI: An Image Analysis Perspective,” Brain Imaging and Behavior 8, no. 1 (2014): 7–23.
38. M. Misaki, W. M. Luh, and P. A. Bandettini, “The Effect of Spatial Smoothing on fMRI Decoding of Columnar-Level Organization with Linear Support Vector Machine,” Journal of Neuroscience Methods 212, no. 2 (2013): 355–361.
39. Y. B. Sirotin and A. Das, “Anticipatory Haemodynamic Signals in Sensory Cortex Not Predicted by Local Neuronal Activity,” Nature 457, no. 7228 (2009): 475–479.
40. S. D. Muthukumaraswamy and K. D. Singh, “Spatiotemporal Frequency Tuning of BOLD and Gamma Band MEG Responses Compared in Primary Visual Cortex,” NeuroImage 40, no. 4 (2008): 1552–1560.
41. P. A. Bandettini, E. C. Wong, A. Jesmanowicz, R. S. Hinks, and J. S. Hyde, “Spin-Echo and Gradient-Echo EPI of Human Brain Activation Using BOLD Contrast: A Comparative Study at 1.5 T,” NMR in Biomedicine 7, no. 1–2 (1994): 12–20.
42. E. Yacoub, A. Shmuel, J. Pfeuffer, P. F. Van De Moortele, G. Adriany, P. Andersen, et al., “Imaging Brain Function in Humans at 7 Tesla,” Magnetic Resonance in Medicine 45, no. 4 (2001): 588–594; T. Q. Duong, E. Yacoub, G. Adriany, X. Hu, K. Ugurbil, J. T. Vaughan, et al., “High-Resolution, Spin-Echo BOLD, and CBF fMRI at 4 and 7 T.” Magnetic Resonance in Medicine 48, no. 4 (2002): 589–593.
43. P. W. Stroman, V. Krause, K. L. Malisza, U. N. Frankenstein, and B. Tomanek, “Extravascular Proton-Density Changes as a Non-BOLD Component of Contrast in fMRI of the Human Spinal Cord,” Magnetic Resonance in Medicine 48, no. 1 (2002): 122–127.
44. P. Douek, R. Turner, J. Pekar, N. Patronas, and D. Le Bihan, “MR Color Mapping of Myelin Fiber Orientation,” Journal of Computer Assisted Tomography 15, no. 6 (1991): 923–929.
45. D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet, “MR Imaging of Intravoxel Incoherent Motions: Application to Diffusion and Perfusion in Neurologic Disorders,” Radiology 161, no. 2 (1986): 401–407; D. Le Bihan, R. Turner, C. T. Moonen, and J. Pekar, “Imaging of Diffusion and Microcirculation with Gradient Sensitization: Design, Strategy, and Significance,” Journal of Magnetic Resonance Imaging 1, no. 1 (1991): 7–28.
46. D. Le Bihan, S. I. Urayama, T. Aso, T. Hanakawa, and H. Fukuyama, “Direct and Fast Detection of Neuronal Activation in the Human Brain with Diffusion MRI,” Proceedings of the National Academy of Sciences of the United States of America 103, no. 21 (2006): 8263–8268; S. Kohno, N. Sawamoto, S. I. Urayama, T. Aso, K. Aso, A. Seiyama, et al., “Water-Diffusion Slowdown in the Human Visual Cortex on Visual Stimulation Precedes Vascular Responses,” Journal of Cerebral Blood Flow and Metabolism 29, no. 6 (2009): 1197–1207.
47. K. L. Miller, D. P. Bulte, H. Devlin, M. D. Robson, R. G. Wise, M. W. Woolrich, et al., “Evidence for a Vascular Contribution to Diffusion FMRI at High B Value,” Proceedings of the National Academy of Sciences of the United States of America 104, no. 52 (2007): 20967–20972.
48. P. A. Bandettini, N. Petridou, and J. Bodurka, “Direct Detection of Neuronal Activity with MRI: Fantasy, Possibility, or Reality?,” Applied Magnetic Resonance 29, no. 1 (2005): 65–88.
49. T. K. Truong, A. Avram, and A. W. Song, “Lorentz Effect Imaging of Ionic Currents in Solution,” Journal of Magnetic Resonance 191, no. 1 (2008): 93–99.
50. G. T. Buracas, T. T. Liu, R. B. Buxton, L. R. Frank, and E. C. Wong, “Imaging Periodic Currents Using Alternating Balanced Steady-State Free Precession,” Magnetic Resonance in Medicine 59, no. 1 (2008): 140–148; T. Witzel, F. H. Lin, B. R. Rosen, and L. L. Wald, “Stimulus-Induced Rotary Saturation (SIRS): A Potential Method for the Detection of Neuronal Currents with MRI,” NeuroImage 42, no. 4 (2008): 1357–1365.
51. N. Ofen, S. Whitfield-Gabrieli, X. J. Chai, R. F. Schwarzlose, and J. D. Gabrieli, “Neural Correlates of Deception: Lying about Past Events and Personal Beliefs,” Social Cognitive and Affective Neuroscience 12, no. 1 (2017): 116–127.
52. Z. Yang, Z. Huang, J. Gonzalez-Castillo, R. Dai, G. Northoff, and P. Bandettini, “Using fMRI to Decode True Thoughts Independent of Intention to Conceal,” NeuroImage 99 (October 2014): 80–92.
53. A. Eklund, T. E. Nichols, and H. Knutsson, “Cluster Failure: Why fMRI Inferences for Spatial Extent Have Inflated False-Positive Rates,” Proceedings of the National Academy of Sciences of the United States of America 113, no. 28 (2016): 7900–7905.
54. S. Shakil, C. H. Lee, and S. D. Keilholz, “Evaluation of Sliding Window Correlation Performance for Characterizing Dynamic Functional Connectivity and Brain States,” NeuroImage 133 (2016): 111–128.