Index

Note: Page numbers followed by f indicate figures, and t indicate tables.

A

AAMs  See Alkali-activated materials (AAMs)
AAS  See Alkali-activate slag (AAS)
Absorbed dose D 18–19
Active Open-Chamber Method 99
Activity concentration index approach 46–50, 186
Air-cooled blast-furnace slag 196
Alkali-activated cements (AACs) 270–273
Alkali-activated materials (AAMs) 5–6
blast-furnace slag 203–207
chemical composition 202–203
coal fly ash 208–215
developement 202
granulated phosphorus slag 219–220
nonferrous slags 217–219
radiological aspects 220
red mud 215–217
steel-melting slags 215
toxic and radioactive waste immobilization 240
Alkali-activate slag (AAS) 203, 205
Alpha (α-) radiation 13
Alpha spectrometry 94
Aluminum dross 
radiological properties 163–165
technical properties 162–163, 165t
Aluminum-rich by-products 
aluminum scrap recycling waste 225
anodizing and powder surface coating processes 226
anodizing sludge 227, 227t
bauxitic-type refractories 225–226
bricks production 227
chemical composition 225, 225t
distinct pigments 229, 229f
elemental analysis 225, 225t
extrusion and slip casting 228–229, 229f
mullite 227–229, 228t
pore structure 225, 226f
radiological properties 230
reutilization areas 225
Aluminum scrap recycling waste (ASRW) 225
Analogue-to-digital converter (ADC) 62
ANGLE software 123
Annual average indoor radon concentration 126–128, 127t
Antithesis 109
ASRW  See Aluminum scrap recycling waste (ASRW)
Australia 53
Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) 53
Austria 50–51
Austrian index 56

B

Basic oxygen furnace (BOF) 152, 196
Bauxite residue 
radiological properties 160–162, 163–164t
technical properties 160, 161–162t
Beck's method 68
Becquerel (Bq) 13
Belgium 51
Beta (β-) radiation 14
Bethe-Bloch formula 17
Blast-furnace slag (BFS) 
AAMs 203–207
air-cooled 152, 155, 156t, 196
cement types 194, 195t
ground granulated 152, 155, 156t
iron ores, sinter/scrap 154
metallurgical slags 154, 154f
modern concrete compositions 196, 197t
pelletized 152, 155, 156t, 196
226Ra, 232Th, and 40155, 157t
Blue concrete 23
BOF  See Basic oxygen furnace (BOF)
Building materials 9, 301–302
ceramics 221–233
geopolymers  See (Alkali-activated materials (AAMs))
gypsum 235–239
hydrous calcium sulfate  See (Gypsum)
industrial by-product recycling 184–187
Portland cement and concretes 188–202

C

Calibration and metrological assurance 
detector characteristics 84
HPGe gamma spectrometry 125–126
in situ measurements 125–126
metrological traceability 84
mixed radionuclide solution 120
Monte Carlo computer codes 84, 122–124
reference source 84
scintillation detector 84
semiconductor detector efficiency calibration curve 121, 121f
transmission method 121–122
yield and activity 120
Calibration procedure 70
Cement and concrete industry 
coal bottom ash 194
coal fly ash 188–194
copper slag 197–198
iron and steel production slag 194–197
radiological aspects 200–202
red mud 199–200
Cement Barriers Partnership (CBP) 256–257
Ceramic frit production 231–232
Ceramics 
aluminum-rich by-products 224–230
coal fly ash 221–224
radiological aspects 232–233, 234t
steel slag 224
zircon and zirconia 230–232
Ceramic tile production 231–232
Closed-Chamber Method 98
Coal bottom ash 
cement and concrete industry 194
coal mining and combustion 148–149, 150–151t
Coal fly ash 
cement and concrete industry 188–194
radiological properties 145–148, 146–148t
technical properties 145
Coal mining and combustion 
coal bottom ash 148–149, 150–151t
coal fly ash 145–148, 146–148t
energy production process 143
226Ra activity 143, 144t
238U, 232Th, and 40K activity 143, 144t
Colimator application 70, 71f
Compacted granular leach test 263
Compton scattering 80–81
Construction materials 1–2, 5–6, 9
Construction product, definition 9
Construction product regulation (CPR) 85, 254
Construction Products Directive (CPD) 254
Contaminants of potential concern (COPCs) 256–257
Continuous measurement method 94
Copper slag 
radiological properties 198, 199–200t
technical properties 197, 199t
Cosmic radiation 20–21
Cosmogenic nuclides 15
COST Action Tu1301 “NORM4Building” 1–3
COST network 2, 2f
Council Directive 1996/29/EURATOM 38–39
Council Directive 2013/59/EURATOM 42–45
CPR 305/2011 43–45
CPR  See Construction product regulation (CPR)
Crystalline slag 174–175
Curie (Ci) 13
Czech Republic 51–52, 52t

D

DAF  See Dilution-attenuation factor (DAF)
Daughter nuclide 13
Decay constant 14
Decision limit (DL) 
antithesis 109
application 112–115, 112f
determination 115–116, 115f
“Error of the first kind” 109, 109t
“Error of the second kind” 109, 109t
null-hypothesis 109
numerical realization 116
probability density distribution 110, 110f
radioactivity determination 109
Densely ionizing particles 17
Depletion layer 63–64
Deterministic detriments 19
Dilution-attenuation factor (DAF) 277f
Dose rate measurement 
angle dependence 90–91
easy-sounding procedure 89
energy dependence 89–90, 90f
Dosimetric models 2f
Dosimetry, uncertainty 117–120, 119t
Drinking water Directive 2013/51/ EURATOM 38, 45–46, 46t
Dwelling exposure scenario 41

E

EAF  See Electric arc furnace (EAF)
EEC  See Equilibrium equivalent concentration (EEC)
Effective dose E 18–19
EFFiciency TRANsfer (EFFTRAN) 124
Electret 95
Electric arc furnace (EAF) 152, 196
Emitted radiation 13
End of waste (EoW) status 254
Energy imparted to matter 18–19
Equilibrium equivalent concentration (EEC) 22
Equivalent dose H 18–19
Equivalent radon diffusion coefficient 30
ETNA 124
EU legislative approach 38–42
Rp 96 38–39
RP 112 39–40
RP 122 part II 41–42, 41t, 46
Euratom-Basic safety standards (EU-BSS) 22, 54–55, 85, 301
Euratom Basic safety standards - Annex VIII 42–43
Euratom Basic safety standards - Annex XVIII 42
European Committee for Standardization (CEN) 44
European norm (EN) 44–45
Expanded/foamed slag 175
External radiation dose 20–21

F

Ferrous industry 
blast furnaces 149, 151f
input materials and produced dusts 149, 152t
slag 149–155, 153t, 154f, 156t
Flue-gas desulfurization (FGD) 235
Full width at half maximum (FWHM) resolution 65
Fulvic acid (FA) 263

G

Gamma-Method 101–102
Gamma (γ-) radiation 14
Gamma-ray spectrometry 94
advantages 62
analogue-todigital converter 62
analysis 65, 66f
building products 62
calibration and metrological assurance 83–84
calibration methods 63
decision threshold and detection limit 109–117, 109t
harmonized standard for building products 85–88
multichannel analyzer 62
radionuclide 62
raw materials 62
sample spectrum with characteristic peaks 62, 63f
scintillation spectrometry 77–83
semiconductor spectrometry 63–76
spectrum analysis software 62
uncertainty 106–109, 117, 118f
Uranium and Thorium series 63
General exemption or clearance levels (GCL) 41, 41–42t, 43
Geochemical speciation 274, 275–276f
Geopolymers  See Alkali-activated materials (AAMs)
GESPECOR 123
Granulated phosphorus slag 219–220
Granulated slag 175
Ground-granulated blast-furnace slag (GGBFS) 194, 195t
Gypsum 
FGD 235
phosphogypsum 235–238
radiological aspects 238–239

H

Harmonized dose assessment approach 44–45
Harmonized standards, building products 
background 85
robustness testing 86–88, 87f
Technical Specification 85–86
High Purity Germanium (HPGe) 64–65
Humic acid (HA) 263
Hydrous ferric oxides (HFO) 263

I

IAEA Safety Glossary 6
I-index 301–302
Indicative dose (ID) 45–46
Industrial by-product recycling 
activity concentration index 186
alkaline activation 184–185
gamma radiation component 187
indoor radon concentration 187
manufacturing eco-efficient cements 184–185
monitored quantity and radon exhalation 187
natural materials 186
NORM processing 186
OPC production 184
radionuclides 185
reuse and valorization 185
types 184
In Situ Object Counting System (ISOCS) 124, 125f
In situ spectrometry 
advantages 68
algorithms 68–69
colimator application 70, 71f
indoor applications 68–70, 70f
limitation 68–69
Monte Carlo simulation 68–69
natural and artificial radionuclides, soil 68
outdoor application 68–69, 69f
source 68
surface flat soils 68–69
versatile and efficient tool 68–69
vertical distribution of radionuclides 68
Integrated measurement method 92
Internal radiation dose 16f, 20f, 21–23
International Atomic Energy Agency (IAEA) framework 53
International standard ISO 11665-7 98
Ionization chamber 94
ISOCS software 124–125, 125f
Israeli index 55–56

L

Laboratory gamma-ray spectrometry 
high-resolution 76, 77f
NORM vs. artificial radionuclides 71–72
NORM residues 72, 72f
sampling and measurement 70–72
sampling campaign organization 72f, 73
sampling method 73
technological processes 70–71
Laboratory Sourceless Calibration System (LabSOCS) 124
Ladle Furnace (LF) refining process 152
Leaching assessment 
AACs 270–273
alkali metals 258–259
Ba release 270, 270f
cationic behavior 258
CBP 256–257
chemical analysis 263–264
compacted granular leach test 263
COPCs 256–257
CPR 254
decision scheme 278, 279f
end of life 255
environmental assessment  See (Scenario approach)
EoW status 254
EPA and EU methods 264
EPA Method 1313 and EPA Method 1316 260
function of pH 258, 259f
graded/tiered approach 257–258
human health and environmental impacts 253–254
K leaching 268, 268f
LEAF 255
monolith leach test 262
natural radioactivity 254
observations and information 278
oxyanionic behavior 258
Pb-210 and Po-210 266–267, 267f
percolation test 255, 262
performance 277–278
pH dependence 261–262
phosphorous slag 266, 267t
principal physical characteristics 256
Ra-226 and Ra-228 259
radiological impact assessment 278–282, 280–281t
radionuclide release behavior 274, 275–276f
radionuclides 258
reactive transport modeling 274, 275–276f
redox capacity test 263
redox conditions and carbonation 274, 277f
sorptive phase parameters 263
source-path-target impact 274–277, 277f
tiered-approach 277–278
type and standard reference 260, 261t
U and Pb 267–268, 268f
U and Th leaching 268, 269f
uncertainty 265–266, 265t
uranium and thorium decay 259
U release 268–270, 269f
Leaching Assessment Framework (LEAF) 303
Leaching Environmental Assessment Framework (LEAF)  See Leaching assessment
Legislation regulating radiation protection 9–10
Legislative aspects 
Council Directive 2013/59/EURATOM 42–45
CPR 305/2011 43–45
drinking water Directive 45–46, 46t
EU guidance and regulations 38, 38f
national legislations 46–53, 47–49t
NORM residues 37–38
RP 96 38–39
RP 112 39–40
RP 122 part II 41–42, 41t, 46
screening tools 53–57
Linz and Donawitz (LD) refining process 152
Liquid scintillation 94
LNT theory 19
Lower limit of detection (LLD) 
application 112–115, 112f
definition 110–111
determination 115–116, 115f
net rate density distribution 110f, 111
numerical realization 116
single-sided confidence level 110, 111t
single-sided significance level 110, 111t

M

Metallurgical slags 154, 154f
Monolith leach test 262
Multichannel analyzer (MCA) 62

N

National legislations 
activity concentration index approach 46–50
Australia 53
Austria 50–51
Belgium 51
Czech Republic 51–52, 52t
in EU and non-EU countries 46–50, 47–49t
Raeq method 37
screening tool reference values 46–50, 47–49t
Naturally occurring radionuclides (NOR) 279, 281–282
Natural radioactive decay series 15, 16f
Natural radioactivity 38–42
Natural radionuclides 
activity concentration 23–28, 25–26t, 27f
convective process 29–30
decay series 16f, 23
equivalent radon diffusion coefficient 30
fraction of free radon 30–31, 31f
function C(x) 30
Keller criterion 33
radium activity concentration 29, 29t, 31, 32t
radon diffusion coefficient 30, 33, 34t
radon diffusion length 33, 34t
radon diffusion transport 30
radon emanation coefficient 28–29, 29t, 32
radon exhalation 28
radon surface exhalation rate 31, 32t
Nonferrous industry 
aluminum dross 162–165, 165t
definition 155
red mud 160–162, 161–164t
slag 155–160, 158f, 159t
Nonferrous slags 
AAMs 217–219
radiological properties 158–160, 159t
technical properties 155–158, 158f
Nontechnical aspects 
CE marking and certification aspects 296–297
cost aspects 294–295
environmental and health issues 292
NORM by-product 295–296
potential market and acceptance/perception aspects 293–294
product development 297–298
product process interaction 291
properties and status 290–291
recycling types 292–293
size of by-product stream 290
NOR  See Naturally occurring radionuclides (NOR)
NORM4Building 
built-in visualization methods 138, 140f
“comparison” feature 138, 142f
data collection 137
data mining process 137
dose calculation panel 138, 141f
geological origin 138
user interface 138, 139f
utilization 138–143
NORM4Building database 2, 302
NORM4Building network 2, 2f
NORM by-products 5–6, 8–10
coal bottom ash 148–149, 150–151t
coal fly ash 145–148, 146–148t
crystalline slag 174–175
exemption and clearance levels 136
expanded/foamed slag 175
ferrous industry 149–155
granulated slag 175
industrial sectors 136
nonferrous industry 155–165
phosphate industry 169–174
226Ra activity 143, 144t
238U, 232Th, and 40K activity 143, 144t
zircon and zirconia 165–169
NORM residues 2, 6 See also NORM by-products
Null-hypothesis 109

O

Occupancy time 22
Open Charcoal Chamber Method 99
Organ/tissue weighting factors (wT18–19, 19t

P

PAEC.  See Potential alpha energy concentration (PAEC)
Parent nuclide 13
Particles transfer 17
Pelletized blast-furnace slag 196
Percolation test 255, 262
Phosphate industry 
phosphogypsum 170–174
production 169–170
UNSCEAR 170
Phosphogypsum 
European soil 171–173, 174t
NORM4Building database 171, 171–173t
radiological properties, building materials 236–238
226Ra, 232Th, and 40173–174
technical properties 170–174, 235–236
Photoelectric effect 18, 80–81
Potential alpha energy concentration (PAEC) 22
Primary raw material 6, 7t
Primordial radionuclides 15
Production process 8

R

Radiation exposure 
external radiation 20–21
internal radiation 16f, 20f, 21–23
structure 20, 20f
Radiation physics 
α-radiation interaction 17
β-radiation interaction 17
doses and units 18–19
γ-radiation interaction 18
Radiation protection (RP) 96 38–39
Radiation protection (RP) 112 39–40
Radiation protection (RP) 122 part II 41–42, 41t, 46
Radiation weighting factor (wR18–19, 19t
Radioactivity 
α radiation 13
β radiation 14
decay constant 14
definition 13
γ radiation 14
SI derived unit 13
X-rays 14
Radiogenic nuclides/radionuclides 15
Radon and radon progeny measurement methods 
classification 92–94, 93t
continuous measurement method 94
detection principles 93t, 94–95
integrated measurement method 92
short and long-lived radon progeny 91
spot measurement method 94
Radon detection principles 
alpha spectrometry 94
electret 95
gamma spectrometry 94
ionization chamber 94
liquid scintillation 94
solid-state nuclear track detectors 94
ZnS(Ag) scintillation 94
Radon diffusion transport 30
Radon emanation and exhalation measurements 
emanation coefficient 101–102
mass exhalation rate 100–101, 100f
modeling indoor radon concentration 102
surface exhalation rate 97–99
Radon emanation coefficient 28–29, 29t, 302–303
Radon exhalation 28, 302–303
Radon measurement 
building material 102–104
classification 92–94, 93t
continuous measurement method 94
detection principles 93t, 94–95
emanation and exhalation 97–102
indoor radon concentrations 95–97, 96f
integrated measurement method 92
short and long-lived radon progeny 91
spot measurement method 94
Raeq method 37
Random sampling 73
Random systematic sampling 73
Reactive transport modeling 274, 275–276f
Red mud 
AAMs 215–217
cement and concrete industry 199–200
nonferrous industry 160–162, 161–164t
Redox capacity test 263

S

Sampling density 73
Sampling method 
composite sample 74, 74f
documentation 74
human and technical resources 74
increment 73
laboratory sample preparation 75
QA/QC procedures 74, 76
quantity sample and laboratory sample sizes preparation 74
random sampling 73
random systematic sampling 73
representativeness and traceability 76
single sample 74, 74f
spatial distribution 74
subsample 74
systematic sampling 73
tools 75–76
Sampling unit 73
Scenario approach 
applicability and accuracy 274–277
characterization 274
Scintillation detectors 
advantage 125–126
disadvantage 125–126
Scintillation spectrometry 
calibration and device response 78, 78f
expanded measurement uncertainty 82, 83t
laboratory and in situ measurement 77, 77f
least square algorithm 82
limitations 83
measured ad model spectrum 83, 84f
mixture of radionuclides 78, 78f
model of measurement 79
mono-nuclide sources 78, 78f
secular equilibrium 78–79
self-absorption processes 80–81
sensitivity matrix 79–80, 80t
software development 78
spectra analysis 78–79
three typical energy intervals 78–79
three-windows method 78–79
values of coefficient μj,m 80–82, 81t
Screening tools 
Austrian index 56
Ax values 53–54
EU BSS index 54–55
gamma dose rate 53–54
I(ρd) 56–57, 57f
Israeli index 55–56
Secondary raw material 6, 7t
Semiconductor spectrometry 
activity and uncertainty calculation 65–67, 66f
advantage 82–83
depletion layer 63–64
FWHM resolution 65
HPGe 64–65
in situ spectrometry 68–70, 70–71f
laboratory gamma-ray spectrometry 70–76, 72f, 74f
modern germanium detectors 65
n-type semiconductor 63–64
p-n junction 64, 64f
p-type semiconductor 63–64
typical NaI(Tl) detector 65
Solid-state nuclear track detectors (SSNTD) 94
Spot measurement method 94
Steel slag 152, 196
Stochastic detriments 19
STUK model 39
Supplementary cementitious materials (SCMs) 5–6
Systematic sampling 73

T

Technical Specification (TS) 44–45
application 87–88
characteristics 86
limitations 86
measurement method 85
parameters 86, 87f
regulations and standardized practices 86
Transmission method 121–122

U

Uncertainty 
annual average indoor radon concentration 126–128, 127t
dosimetry 117–120, 119t
gamma-ray spectrometry 106–109, 117, 118f
leaching assessment 265–266, 265t

W

Weakly ionizing particles 17

X

X-rays 14

Z

Zircon and zirconia 
ceramics 230–232
radiological properties 166–169, 168t
technical properties 165–166, 167f
Zircon sand milling 231–232
ZnS(Ag) scintillation 94