1.
C.D. Sherrill, Frontiers in electronic structure theory. J. Chem. Phys. 132, 110902 (2010)
2.
K. Burke, Perspective on density functional theory. J. Chem. Phys. 136, 150901 (2012)
3.
A.D. Becke, Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18A301 (2014)
4.
C.P. Robert, Monte Carlo Methods (Wiley, New York, 2004)
5.
P.A. Lee, N. Nagaosa, X.-G. Wen, Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006)
6.
B. Keimer, S.A. Kivelson, M.R. Norman, S. Uchida, J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides. Nature 518(7538), 179 (2015)
7.
R.B. Laughlin, Nobel lecture: fractional quantization. Rev. Mod. Phys. 71, 863–874 (1999)
8.
H.A. Kramers, G.H. Wannier, Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 60(3), 252 (1941)
9.
H.A. Kramers, G.H. Wannier, Statistics of the two-dimensional ferromagnet. Part II. Phys. Rev. 60(3), 263 (1941)
10.
R.J. Baxter, Dimers on a rectangular lattice. J. Math. Phys. 9, 650 (1968)
11.
M.P. Nightingale, H.W.J. Blöte, Gap of the linear spin-1 Heisenberg antiferromagnet: a Monte Carlo calculation. Phys. Rev. B 33, 659–661 (1986)
12.
S.B. Kelland, Estimates of the critical exponent β for the Potts model using a variational approximation. Can. J. Phys. 54(15), 1621–1626 (1976)
13.
S.K. Tsang, Square lattice variational approximations applied to the Ising model. J. Stat. Phys. 20(1), 95–114 (1979)
14.
B. Derrida, M.R. Evans, Exact correlation functions in an asymmetric exclusion model with open boundaries. J. Phys. I 3(2), 311–322 (1993)
15.
B. Derrida, M.R. Evans, V. Hakim, V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A Math. Gen. 26(7), 1493 (1993)
16.
T. Nishino, K. Okunishi, Corner transfer matrix renormalization group method. J. Phys. Soc. Jpn. 65, 891–894 (1996)
17.
T. Nishino, K. Okunishi, M. Kikuchi, Numerical renormalization group at criticality. Phys. Lett. A 213(1–2), 69–72 (1996)
18.
T. Nishino, Y. Hieida, K. Okunishi, N. Maeshima, Y. Akutsu, A. Gendiar, Two-dimensional tensor product variational formulation. Prog. Theor. Phys. 105(3), 409–417 (2001)
19.
T. Nishino, K. Okunishi, Y. Hieida, N. Maeshima, Y. Akutsu, Self-consistent tensor product variational approximation for 3D classical models. Nucl. Phys. B 575(3), 504–512 (2000)
20.
T. Nishino, K. Okunishi, A density matrix algorithm for 3D classical models. J. Phys. Soc. Jpn. 67(9), 3066–3072 (1998)
21.
K. Okunishi, T. Nishino, Kramers-Wannier approximation for the 3D Ising model. Prog. Theor. Phys. 103(3), 541–548 (2000)
22.
T. Nishino, K. Okunishi, Numerical latent heat observation of the q = 5 Potts model (1997). arXiv preprint cond-mat/9711214
23.
K.G. Willson, The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975)
24.
M.D. Kovarik, Numerical solution of large S = 1∕2 and S = 1 Heisenberg antiferromagnetic spin chains using a truncated basis expansion. Phys. Rev. B 41, 6889–6898 (1990)
25.
T. Xiang, G.A. Gehring, Real space renormalisation group study of Heisenberg spin chain. J. Magn. Magn. Mater. 104, 861–862 (1992)
26.
T. Xiang, G.A. Gehring, Numerical solution of S = 1 antiferromagnetic spin chains using a truncated basis expansion. Phys. Rev. B 48, 303–310 (1993)
27.
J. Kondo, Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964)
28.
S.R. White, R.M. Noack, Real-space quantum renormalization groups. Phys. Rev. Lett. 68, 3487 (1992)
29.
S.R. White, Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992)
30.
S.R. White, Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345–10356 (1993)
31.
R.J. Bursill, T. Xiang, G.A. Gehring, The density matrix renormalization group for a quantum spin chain at non-zero temperature. J. Phys. Condens. Matter 8(40), L583 (1996)
32.
S. Moukouri, L.G. Caron, Thermodynamic density matrix renormalization group study of the magnetic susceptibility of half-integer quantum spin chains. Phys. Rev. Lett. 77, 4640–4643 (1996)
33.
X.-Q. Wang, T. Xiang, Transfer-matrix density-matrix renormalization-group theory for thermodynamics of one-dimensional quantum systems. Phys. Rev. B 56(9), 5061 (1997)
34.
N. Shibata, Thermodynamics of the anisotropic Heisenberg chain calculated by the density matrix renormalization group method. J. Phys. Soc. Jpn. 66(8), 2221–2223 (1997)
35.
K.A. Hallberg, Density-matrix algorithm for the calculation of dynamical properties of low-dimensional systems. Phys. Rev. B 52, R9827–R9830 (1995)
36.
S. Ramasesha, S.K. Pati, H.R. Krishnamurthy, Z. Shuai, J.L. Brédas, Low-lying electronic excitations and nonlinear optic properties of polymers via symmetrized density matrix renormalization group method. Synth. Met. 85(1), 1019–1022 (1997)
37.
T.D. Kühner, S.R. White, Dynamical correlation functions using the density matrix renormalization group. Phys. Rev. B 60, 335–343 (1999)
38.
E. Jeckelmann, Dynamical density-matrix renormalization-group method. Phys. Rev. B 66, 045114 (2002)
39.
M. Fannes, B. Nachtergaele, R.F. Werner, Ground states of VBS models on Cayley trees. J. Stat. Phys. 66, 939 (1992)
40.
M. Fannes, B. Nachtergaele, R.F. Werner, Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)
41.
A. Klumper, A. Schadschneider, J. Zittartz, Equivalence and solution of anisotropic spin-1 models and generalized t-J fermion models in one dimension. J. Phys. A Math. Gen. 24(16), L955 (1991)
42.
T.J. Osborne, M.A. Nielsen, Entanglement, quantum Phase transitions, and density matrix renormalization. Quantum Inf. Process 1(1), 45–53 (2002)
43.
G. Vidal, Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)
44.
F. Verstraete, D. Porras, J.I. Cirac, Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. Phys. Rev. Lett. 93, 227205 (2004)
45.
G. Vidal, Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502 (2004)
46.
C.H. Bennett, D.P. DiVincenzo, Quantum information and computation. Nature 404, 247–255 (2000)
47.
M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Communication (Cambridge University Press, Cambridge, 2000)
48.
L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)
49.
R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
50.
M.B. Hastings, Locality in quantum and Markov dynamics on lattices and networks. Phys. Rev. Lett. 93, 140402 (2004)
51.
M.B. Hastings, Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)
52.
M.B. Hastings, An area law for one-dimensional quantum systems. J. Stat. Mech. Theory Exp. 2007(08), P08024 (2007)
53.
Y.-C. Huang, Classical Simulation of Quantum Many-body Systems (University of California, California, 2015)
54.
J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)
55.
M. Srednicki, Entropy and area. Phys. Rev. Lett. 71, 666–669 (1993)
56.
J.I. Latorre, E. Rico, G. Vidal, Ground state entanglement in quantum spin chains. Quantum Inf. Comput. 4, 48 (2004)
57.
P. Calabrese, J. Cardy, Entanglement entropy and quantum field theory. J. Stat. Mech. Theor. Exp. 2004(06) (2004)
58.
M.B. Plenio, J. Eisert, J. Dreissig, M. Cramer, Entropy, entanglement, and area: analytical results for harmonic lattice systems. Phys. Rev. Lett. 94, 060503 (2005)
59.
J. Eisert, M. Cramer, M.B. Plenio, Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010)
60.
F. Verstraete, J.I. Cirac, Matrix product states represent ground states faithfully. Phys. Rev. B 73, 094423 (2006)
61.
S. Östlund, S. Rommer, Thermodynamic limit of density matrix renormalization. Phys. Rev. Lett. 75, 3537 (1995)
62.
S. Rommer, S. Östlund, Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group. Phys. Rev. B 55, 2164 (1997)
63.
J. Dukelsky, M.A. Martín-Delǵado, T. Nishino, G. Sierra, Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains. Europhys. Lett. 43, 457 (1998)
64.
I.P. McCulloch, From density-matrix renormalization group to matrix product states. J. Stat. Mech. Theory Exp. 2007(10), P10014 (2007)
65.
U. Schollwöck, The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011)
66.
D. Pérez-García, F. Verstraete, M.M. Wolf, J.I. Cirac, Matrix Product State Representations. Quantum Inf. Comput. 7, 401 (2007)
67.
F. Verstraete, V. Murg, J.I. Cirac, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143–224 (2008)
68.
G. Vidal, Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)
69.
G. Vidal, Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502 (2004)
70.
G. Vidal, Classical simulation of infinite-size quantum lattice systems in one spatial dimension. Phys. Rev. Lett. 98, 070201 (2007)
71.
R. Orús, G. Vidal, Infinite time-evolving block decimation algorithm beyond unitary evolution. Phys. Rev. B 78, 155117 (2008)
72.
J. Haegeman, J.I. Cirac, T.J. Osborne, I. Pižorn, H. Verschelde, F. Verstraete, Time-dependent variational principle for quantum lattices. Phys. Rev. Lett. 107, 070601 (2011)
73.
E. Bartel, A. Schadschneider, J. Zittartz, Excitations of anisotropic spin-1 chains with matrix product ground state. Eur. Phys. J. B Condens. Matter Complex Syst. 31(2), 209–216 (2003)
74.
S.-G. Chung, L.-H. Wang, Entanglement perturbation theory for the elementary excitation in one dimension. Phys. Lett. A 373(26), 2277–2280 (2009)
75.
B. Pirvu, J. Haegeman, F. Verstraete, Matrix product state based algorithm for determining dispersion relations of quantum spin chains with periodic boundary conditions. Phys. Rev. B 85, 035130 (2012)
76.
J. Haegeman, B. Pirvu, D.J. Weir, J.I. Cirac, T.J. Osborne, H. Verschelde, F. Verstraete, Variational matrix product ansatz for dispersion relations. Phys. Rev. B 85, 100408 (2012)
77.
V. Zauner-Stauber, L. Vanderstraeten, J. Haegeman, I.P. McCulloch, F. Verstraete, Topological nature of spinons and holons: elementary excitations from matrix product states with conserved symmetries. Phys. Rev. B 97, 235155 (2018)
78.
C. Holzhey, F. Larsen, F. Wilczek, Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424(3), 443–467 (1994)
79.
G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)
80.
L. Tagliacozzo, T. de Oliveira, S. Iblisdir, J.I. Latorre, Scaling of entanglement support for matrix product states. Phys. Rev. B 78, 024410 (2008)
81.
F. Pollmann, S. Mukerjee, A.M. Turner, J.E. Moore, Theory of finite-entanglement scaling at one-dimensional quantum critical points. Phys. Rev. Lett. 102, 255701 (2009)
82.
F. Pollmann, J.E. Moore, Entanglement spectra of critical and near-critical systems in one dimension. New J. Phys. 12(2), 025006 (2010)
83.
V. Stojevic, J. Haegeman, I.P. McCulloch, L. Tagliacozzo, F. Verstraete, Conformal data from finite entanglement scaling. Phys. Rev. B 91, 035120 (2015)
84.
S.-J. Ran, C. Peng, W. Li, M. Lewenstein, G. Su, Criticality in two-dimensional quantum systems: Tensor network approach. Phys. Rev. B 95, 155114 (2017)
85.
P. Hauke, L. Tagliacozzo, Spread of correlations in long-range interacting quantum systems. Phys. Rev. Lett. 111(20), 207202 (2013)
86.
T. Koffel, M. Lewenstein, L. Tagliacozzo, Entanglement entropy for the long-range Ising chain in a transverse field. Phys. Rev. Lett. 109(26), 267203 (2012)
87.
I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799 (1987)
88.
I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115, 477 (1988)
89.
H. Niggemann, A. Klümper, J. Zittartz, Quantum phase transition in spin-3∕2 systems on the hexagonal lattice-optimum ground state approach. Z. Phys. B 104, 103 (1997)
90.
H. Niggemann, A. Klümper, J. Zittartz, Ground state phase diagram of a spin-2 antiferromagnet on the square lattice. Eur. Phys. J. B Condens. Matter Complex Syst. 13, 15 (2000)
91.
F. Verstraete, M.A. Martin-Delgado, J.I. Cirac, Diverging entanglement length in gapped quantum spin systems. Phys. Rev. Lett. 92, 087201 (2004)
92.
V. Karimipour, L. Memarzadeh, Matrix product representations for all valence bond states. Phys. Rev. B 77, 094416 (2008)
93.
F. Pollmann, A.M. Turner, Detection of symmetry-protected topological phases in one dimension. Phys. Rev. B 86(12), 125441 (2012)
94.
F. Verstraete, J.I. Cirac, Continuous matrix product states for quantum fields. Phys. Rev. Lett. 104, 190405 (2010)
95.
S.R. White, D.J. Scalapino, R.L. Sugar, E.Y. Loh, J.E. Gubernatis, R.T. Scalettar, Numerical study of the two-dimensional Hubbard model. Phys. Rev. B 40, 506–516 (1989).
96.
M. Troyer, U.J. Wiese, Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005)
97.
S.R. White, Spin gaps in a frustrated Heisenberg model for cav4O
9. Phys. Rev. Lett. 77, 3633–3636 (1996)
98.
S.R. White, D.J. Scalapino, Density matrix renormalization group study of the striped phase in the 2D t-J model. Phys. Rev. Lett. 80, 1272 (1998)
99.
T. Xiang, J.-Z. Lou, Z.-B. Su, Two-dimensional algorithm of the density-matrix renormalization group. Phys. Rev. B 64, 104414 (2001)
100.
E.M. Stoudenmire, S.R. White, Studying two-dimensional systems with the density matrix renormalization group. Annu. Rev. Condens. Matter Phys. 3, 111–128 (2012)
101.
N. Schuch, M.M. Wolf, F. Verstraete, J.I. Cirac, Entropy scaling and simulability by matrix product states. Phys. Rev. Lett. 100, 030504 (2008)
102.
F. Mila, Quantum spin liquids. Eur. J. Phys. 21(6), 499 (2000)
103.
L. Balents, Spin liquids in frustrated magnets. Nature 464, 199 (2010)
104.
L. Savary, L. Balents, Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017)
105.
H.C. Jiang, Z.Y. Weng, D.N. Sheng, Density matrix renormalization group numerical study of the kagome antiferromagnet. Phys. Rev. Lett. 101, 117203 (2008)
106.
S. Yan, D.A. Huse, S.R. White, Spin-liquid ground state of the S = 1∕2 kagome Heisenberg antiferromagnet. Science 332(6034), 1173–1176 (2011)
107.
H.-C. Jiang, Z.-H. Wang, L. Balents, Identifying topological order by entanglement entropy. Nat. Phys. 8, 902–905 (2012)
108.
S. Depenbrock, I.P. McCulloch, U. Schollwöck, Nature of the spin-liquid ground state of the S = 1∕2 Heisenberg model on the kagome lattice. Phys. Rev. Lett. 109, 067201 (2012)
109.
S. Nishimoto, N. Shibata, C. Hotta, Controlling frustrated liquids and solids with an applied field in a kagome Heisenberg antiferromagnet. Nat. Commun. 4, 2287 (2012)
110.
Y.-C. He, M.P. Zaletel, M. Oshikawa, F. Pollmann, Signatures of Dirac cones in a DMRG study of the kagome Heisenberg model. Phys. Rev. X 7, 031020 (2017)
111.
T. Nishino, Y. Hieida, K. Okunishi, N. Maeshima, Y. Akutsu, A. Gendiar, Two-dimensional tensor product variational formulation. Prog. Theor. Phys. 105(3), 409–417 (2001)
112.
F. Verstraete, J.I. Cirac, Valence-bond states for quantum computation. Phys. Rev. A 70, 060302 (2004)
113.
F. Verstraete, J.I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions (2004). arXiv preprint:cond-mat/0407066
114.
I. Affleck, T. Kennedy, E. H. Lieb, H. Tasaki, Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115(3), 477–528 (1988)
115.
F. Verstraete, M.M. Wolf, D. Perez-Garcia, J.I. Cirac, Criticality, the area law, and the computational power of projected entangled pair states. Phys. Rev. Lett. 96, 220601 (2006)
116.
D. Poilblanc, N. Schuch, D. Pérez-García, J.I. Cirac, Topological and entanglement properties of resonating valence bond wave functions. Phys. Rev. B 86, 014404 (2012)
117.
N. Schuch, D. Poilblanc, J.I. Cirac, D. Pérez-García, Resonating valence bond states in the PEPS formalism. Phys. Rev. B 86, 115108 (2012)
118.
L. Wang, D. Poilblanc, Z.-C. Gu, X.-G Wen, F. Verstraete, Constructing a gapless spin-liquid state for the spin-1∕2 j
1–j
2 Heisenberg model on a square lattice. Phys. Rev. Lett. 111, 037202 (2013)
119.
D. Poilblanc, P. Corboz, N. Schuch, J.I. Cirac, Resonating-valence-bond superconductors with fermionic projected entangled pair states. Phys. Rev. B 89(24), 241106 (2014)
120.
P.W. Anderson, Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8(2), 153–160 (1973)
121.
P.W. Anderson, On the ground state properties of the anisotropic triangular antiferromagnet. Philos. Mag. 30, 432 (1974)
122.
P.W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196 (1987)
123.
G. Baskaran, Z. Zou, P.W. Anderson, The resonating valence bond state and high-Tc superconductivity—a mean field theory. Solid State Commun. 63(11), 973–976 (1987)
124.
P.W. Anderson, G. Baskaran, Z. Zou, T. Hsu, Resonating-valence-bond theory of phase transitions and superconductivity in La2CuO4-based compounds. Phys. Rev. Lett. 58, 2790–2793 (1987)
125.
Z.C. Gu, M. Levin, B. Swingle, X.G. Wen, Tensor-product representations for string-net condensed states. Phys. Rev. B 79, 085118 (2009)
126.
O. Buerschaper, M. Aguado, G. Vidal, Explicit tensor network representation for the ground states of string-net models. Phys. Rev. B 79, 085119 (2009)
127.
X. Chen, B. Zeng, Z.C. Gu, I.L. Chuang, X.G. Wen, Tensor product representation of a topological ordered phase: necessary symmetry conditions. Phys. Rev. B 82, 165119 (2010)
128.
X.G. Wen, Vacuum degeneracy of chiral spin states in compactified space. Phys. Rev. B 40, 7387 (1989)
129.
X.G. Wen, Topological orders in rigid states. Int. J. Mod. Phys. B 4, 239 (1990)
130.
X.G. Wen, Q. Niu, Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. Phys. Rev. B 41, 9377 (1990)
131.
X.G. Wen, Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44, 405 (1995)
132.
M. Levin, X.G. Wen, String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005)
133.
M. Levin, X.G. Wen, Colloquium: photons and electrons as emergent phenomena. Rev. Mod. Phys. 77, 871–879 (2005)
134.
X.G. Wen, An introduction to quantum order, string-net condensation, and emergence of light and fermions. Ann. Phys. 316, 1–29 (2005)
135.
N. Schuch, M.M. Wolf, F. Verstraete, J.I. Cirac, Computational complexity of projected entangled pair states. Phys. Rev. Lett. 98, 140506 (2007)
136.
A. García-Sáez, J.I. Latorre, An exact tensor network for the 3SAT problem (2011). arXiv preprint: 1105.3201
137.
T. Hucklea, K. Waldherra, T. Schulte-Herbrüggen. Computations in quantum tensor networks. Linear Algebra Appl. 438, 750–781 (2013)
138.
A.W. Sandvik, G. Vidal, Variational quantum Monte Carlo simulations with tensor-network states. Phys. Rev. Lett. 99, 220602 (2007)
139.
L. Vanderstraeten, J. Haegeman, P. Corboz, F. Verstraete, Gradient methods for variational optimization of projected entangled-pair states. Phys. Rev. B 94, 155123 (2016)
140.
P. Czarnik, L. Cincio, J. Dziarmaga, Projected entangled pair states at finite temperature: imaginary time evolution with ancillas. Phys. Rev. B 86, 245101 (2012)
141.
S.J. Ran, B. Xi, T. Liu, G. Su, Theory of network contractor dynamics for exploring thermodynamic properties of two-dimensional quantum lattice models. Phys. Rev. B 88, 064407 (2013)
142.
M. Levin, C.P. Nave, Tensor renormalization group approach to two-dimensional classical lattice models. Phys. Rev. Lett. 99, 120601 (2007)
143.
S.J. Ran, W. Li, B. Xi, Z. Zhang, G. Su, Optimized decimation of tensor networks with super-orthogonalization for two-dimensional quantum lattice models. Phys. Rev. B 86, 134429 (2012)
144.
E. Stoudenmire, D.J. Schwab, Supervised learning with tensor networks, in Advances in Neural Information Processing Systems (2016), pp. 4799–4807
145.
Z.-Y. Xie, J. Chen, J.-F. Yu, X. Kong, B. Normand, T. Xiang, Tensor renormalization of quantum many-body systems using projected entangled simplex states. Phys. Rev. X 4(1), 011025 (2014)
146.
H.-J. Liao, Z.-Y. Xie, J. Chen, Z.-Y. Liu, H.-D. Xie, R.-Z. Huang, B. Normand, T. Xiang, Gapless spin-liquid ground state in the S = 1∕2 kagome antiferromagnet. Phys. Rev. Lett. 118(13), 137202 (2017)
147.
B. Friedman, A density matrix renormalization group approach to interacting quantum systems on Cayley trees. J. Phys. Condens. Matter 9, 9021 (1997)
148.
M. Lepetit, M. Cousy, G.M. Pastor, Density-matrix renormalization study of the Hubbard model on a Bethe lattice. Eur. Phys. J. B Condens. Matter Complex Syst. 13, 421 (2000)
149.
M.A. Martin-Delgado, J. Rodriguez-Laguna, G. Sierra, Density-matrix renormalization-group study of excitons in dendrimers. Phys. Rev. B 65, 155116 (2002)
150.
Y.-Y. Shi, L.M. Duan, G. Vidal, Classical simulation of quantum many-body systems with a tree tensor network. Phys. Rev. A 74, 022320 (2006)
151.
D. Nagaj, E. Farhi, J. Goldstone, P. Shor, I. Sylvester, Quantum transverse-field Ising model on an infinite tree from matrix product states. Phys. Rev. B 77, 214431 (2008)
152.
L. Tagliacozzo, G. Evenbly, G. Vidal, Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law. Phys. Rev. B 80, 235127 (2009)
153.
V. Murg, F. Verstraete, Ö. Legeza, R.M. Noack, Simulating strongly correlated quantum systems with tree tensor networks. Phys. Rev. B 82, 205105 (2010)
154.
W. Li, J. von Delft, T. Xiang, Efficient simulation of infinite tree tensor network states on the Bethe lattice. Phys. Rev. B 86, 195137 (2012)
155.
N. Nakatani, G.K.L. Chan, Efficient tree tensor network states (TTNS) for quantum chemistry: generalizations of the density matrix renormalization group algorithm. J. Chem. Phys. 138, 134113 (2013)
156.
I. Pižorn, F. Verstraete, R.M. Konik, Tree tensor networks and entanglement spectra. Phys. Rev. B 88, 195102 (2013)
157.
M. Gerster, P. Silvi, M. Rizzi, R. Fazio, T. Calarco, S. Montangero, Unconstrained tree tensor network: an adaptive gauge picture for enhanced performance. Phys. Rev. B 90, 125154 (2014)
158.
V. Murg, F. Verstraete, R. Schneider, P.R. Nagy, Ö. Legeza. Tree tensor network state with variable tensor order: an efficient multireference method for strongly correlated systems. J. Chem. Theory Comput. 11, 1027–1036 (2015)
159.
G. Vidal, Entanglement renormalization. Phys. Rev. Lett. 99, 220405 (2007)
160.
G. Vidal, Class of quantum many-body states that can be efficiently simulated. Phys. Rev. Lett. 101, 110501 (2008)
161.
L. Cincio, J. Dziarmaga, M.M. Rams, Multiscale entanglement renormalization ansatz in two dimensions: quantum Ising model. Phys. Rev. Lett. 100, 240603 (2008)
162.
G. Evenbly, G. Vidal, Entanglement renormalization in two spatial dimensions. Phys. Rev. Lett. 102, 180406 (2009)
163.
M. Aguado, G. Vidal, Entanglement renormalization and topological order. Phys. Rev. Lett. 100, 070404 (2008)
164.
G. Evenbly, G. Vidal, Algorithms for entanglement renormalization. Phys. Rev. B 79, 144108 (2009)
165.
P. Corboz, G. Vidal, Fermionic multiscale entanglement renormalization ansatz. Phys. Rev. B 80, 165129 (2009)
166.
G. Evenbly, G. Vidal, Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms. New J. Phys. 12, 025007 (2010)
167.
G. Evenbly, G. Vidal, Entanglement renormalization in noninteracting fermionic systems. Phys. Rev. B 81, 235102 (2010)
168.
R.N.C. Pfeifer, G. Evenbly, G. Vidal, Entanglement renormalization, scale invariance, and quantum criticality. Phys. Rev. A 79, 040301 (2009)
169.
S. Montangero, M. Rizzi, V. Giovannetti, R. Fazio, Critical exponents with a multiscale entanglement renormalization Ansatz channel. Phys. Rev. B 80, 113103 (2009)
170.
G. Evenbly, P. Corboz, G. Vidal, Nonlocal scaling operators with entanglement renormalization. Phys. Rev. B 82, 132411 (2010)
171.
P. Silvi, V. Giovannetti, P. Calabrese, G.E. Santoro1, R. Fazio, Entanglement renormalization and boundary critical phenomena. J. Stat. Mech. 2010(3), L03001 (2010)
172.
G. Evenbly, G. Vidal, Quantum Criticality with the Multi-scale Entanglement Renormalization Ansatz. Strongly Correlated Syst. Springer 176, 99–130 (2013)
173.
J.C. Bridgeman, A. O’Brien, S.D. Bartlett, A.C. Doherty, Multiscale entanglement renormalization ansatz for spin chains with continuously varying criticality. Phys. Rev. B 91, 165129 (2015)
174.
G. Evenbly, G. Vidal, Tensor network states and geometry. J. Stat. Phys. 145, 891–918 (2011)
175.
B. Swingle, Entanglement renormalization and holography. Phys. Rev. D 86, 065007 (2012)
176.
C. Beny, Causal structure of the entanglement renormalization ansatz. New J. Phys. 15, 023020 (2013)
177.
X.L. Qi, Exact holographic mapping and emergent space-time geometry (2013). arXiv:1309.6282
178.
M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi, K. Watanabe, Continuous multiscale entanglement renormalization ansatz as holographic surface-state correspondence. Phys. Rev. Lett. 115, 171602 (2015)
179.
N. Bao, C.J. Cao, S.M. Carroll, A. Chatwin-Davies, N. Hunter-Jones, J. Pollack, G.N. Remmen, Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence. Phys. Rev. D 91, 125036 (2015)
180.
B. Czech, L. Lamprou, S. McCandlish, J. Sully, Integral geometry and holography (2015). arXiv:1505.05515
181.
M. Natsuume, Ads/CFT duality user guide, in Lecture Notes in Physics, vol. 903 (Springer, Tokyo, 2015)
182.
J. Genzor, A. Gendiar, T. Nishino, Phase transition of the Ising model on a fractal lattice. Phys. Rev. E 93, 012141 (2016)
183.
M. Wang, S.-J. Ran, T. Liu, Y. Zhao, Q.-R. Zheng, G. Su, Phase diagram and exotic spin-spin correlations of anisotropic Ising model on the Sierpiński gasket. Eur. Phys. J. B Condens. Matter Complex Syst. 89(2), 1–10 (2016)
184.
R. König, B.W. Reichardt, G. Vidal, Exact entanglement renormalization for string-net models. Phys. Rev. B 79, 195123 (2009)
185.
S.J. Denny, J.D. Biamonte, D. Jaksch, S.R. Clark, Algebraically contractible topological tensor network states. J. Phys. A Math. Theory 45, 015309 (2012)
186.
F. Verstraete, J.J. García-Ripoll, J.I. Cirac, Matrix product density operators: simulation of finite-temperature and dissipative systems. Phys. Rev. Lett. 93, 207204 (2004)
187.
M. Zwolak, G. Vidal, Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. Phys. Rev. Lett. 93, 207205 (2004)
188.
B. Pirvu, V. Murg, J.I. Cirac, F. Verstraete, Matrix product operator representations. New J. Phys. 12(2), 025012 (2010)
189.
W. Li, S. J. Ran, S.S. Gong, Y. Zhao, B. Xi, F. Ye, G. Su, Linearized tensor renormalization group algorithm for the calculation of thermodynamic properties of quantum lattice models. Phys. Rev. Lett. 106, 127202 (2011)
190.
L. Bonnes, D. Charrier, A.M. Läuchli, Dynamical and steady-state properties of a Bose-Hubbard chain with bond dissipation: a study based on matrix product operators. Phys. Rev. A 90, 033612 (2014)
191.
E. Mascarenhas, H. Flayac, V. Savona, Matrix-product-operator approach to the nonequilibrium steady state of driven-dissipative quantum arrays. Phys. Rev. A 92, 022116 (2015)
192.
J. Cui, J.I. Cirac, M.C. Bañuls, Variational matrix product operators for the steady state of dissipative quantum systems. Phys. Rev. Lett. 114, 220601 (2015)
193.
J. Becker, T. Köhler, A.C. Tiegel, S.R. Manmana, S. Wessel, A. Honecker, Finite-temperature dynamics and thermal intraband magnon scattering in Haldane spin-one chains. Phys. Rev. B 96, 060403 (2017)
194.
A.A. Gangat, I. Te, Y.-J. Kao, Steady states of infinite-size dissipative quantum chains via imaginary time evolution. Phys. Rev. Lett. 119, 010501 (2017)
195.
J. Haegeman, F. Verstraete, Diagonalizing transfer matrices and matrix product operators: a medley of exact and computational methods. Ann. Rev. Condens. Matter Phys. 8(1), 355–406 (2017)
196.
J.I. Cirac, D. Pérez-García, N. Schuch, F. Verstraete, Matrix product density operators: renormalization fixed points and boundary theories. Ann. Phys. 378, 100–149 (2017)
197.
F. Fröwis, V. Nebendahl, W. Dür, Tensor operators: constructions and applications for long-range interaction systems. Phys. Rev. A 81, 062337 (2010)
198.
R. Orús, Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems. Phys. Rev. B 85, 205117 (2012)
199.
P. Czarnik, J. Dziarmaga, Variational approach to projected entangled pair states at finite temperature. Phys. Rev. B 92, 035152 (2015)
200.
P. Czarnik, J. Dziarmaga, Projected entangled pair states at finite temperature: iterative self-consistent bond renormalization for exact imaginary time evolution. Phys. Rev. B 92, 035120 (2015)
201.
P. Czarnik, J. Dziarmaga, A.M. Oleś, Variational tensor network renormalization in imaginary time: two-dimensional quantum compass model at finite temperature. Phys. Rev. B 93, 184410 (2016)
202.
P. Czarnik, M.M. Rams, J. Dziarmaga, Variational tensor network renormalization in imaginary time: benchmark results in the Hubbard model at finite temperature. Phys. Rev. B 94, 235142 (2016)
203.
Y.-W. Dai, Q.-Q. Shi, S.-Y.. Cho, M.T. Batchelor, H.-Q. Zhou, Finite-temperature fidelity and von Neumann entropy in the honeycomb spin lattice with quantum Ising interaction. Phys. Rev. B 95, 214409 (2017)
204.
P. Czarnik, J. Dziarmaga, A.M. Oleś, Overcoming the sign problem at finite temperature: quantum tensor network for the orbital e
g model on an infinite square lattice. Phys. Rev. B 96, 014420 (2017)
205.
A. Kshetrimayum, M. Rizzi, J. Eisert, R. Orús, A tensor network annealing algorithm for two-dimensional thermal states (2018). arXiv preprint:1809.08258
206.
P. Czarnik, J. Dziarmaga, P. Corboz, Time evolution of an infinite projected entangled pair state: an efficient algorithm. Phys. Rev. B 99, 035115 (2019)
207.
H. Matsueda, M. Ishihara, Y. Hashizume, Tensor network and a black hole. Phys. Rev. D 87, 066002 (2013)
208.
A. Mollabashi, M. Naozaki, S. Ryu, T. Takayanagi, Holographic geometry of cMERA for quantum quenches and finite temperature. J. High Energy Phys. 2014(3), 98 (2014)
209.
W.-C. Gan, F.-W. Shu, M.-H. Wu, Thermal geometry from CFT at finite temperature. Phys. Lett. B 760, 796–799 (2016)
210.
H.C. Jiang, Z.Y. Weng, T. Xiang, Accurate determination of tensor network state of quantum lattice models in two dimensions. Phys. Rev. Lett. 101, 090603 (2008)
211.
Z.C. Gu, M. Levin, X.G. Wen, Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions. Phys. Rev. B 78, 205116 (2008)
212.
Z.C. Gu, X.G. Wen, Tensor-entanglement-filtering renormalization approach and symmetry protected topological order. Phys. Rev. B 80, 155131 (2009)
213.
M.-C. Chang, M.-F. Yang, Magnetization plateau of the classical Ising model on the Shastry-Sutherland lattice: a tensor renormalization-group approach. Phys. Rev. B 79, 104411 (2009)
214.
H.-H. Zhao, Z.-Y. Xie, Q.-N. Chen, Z.-C. Wei, J.-W. Cai, T. Xiang, Renormalization of tensor-network states. Phys. Rev. B 81, 174411 (2010)
215.
C.-Y. Huang, F.-L. Lin, Multipartite entanglement measures and quantum criticality from matrix and tensor product states. Phys. Rev. A 81, 032304 (2010)
216.
W. Li, S.-S. Gong, Y. Zhao, G. Su, Quantum phase transition, O(3) universality class, and phase diagram of the spin-
Heisenberg antiferromagnet on a distorted honeycomb lattice: a tensor renormalization-group study. Phys. Rev. B
81, 184427 (2010)
217.
C. G’́uven, M. Hinczewski, The tensor renormalization group for pure and disordered two-dimensional lattice systems. Phys. A Stat. Mech. Appl. 389(15), 2915–2919 (2010). Statistical, Fluid and Biological Physics Problems
218.
C. Güven, M. Hinczewski, A. Nihat Berker, Tensor renormalization group: local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness. Phys. Rev. E 82, 051110 (2010)
219.
L. Wang, Y.-J. Kao, A.W. Sandvik, Plaquette renormalization scheme for tensor network states. Phys. Rev. E 83, 056703 (2011)
220.
Q.N. Chen, M.P. Qin, J. Chen, Z.C. Wei, H.H. Zhao, B. Normand, T. Xiang, Partial order and finite-temperature phase transitions in Potts models on irregular lattices. Phys. Rev. Lett. 107(16), 165701 (2011)
221.
Z.-Y. Xie, J. Chen, M.-P. Qin, J.-W. Zhu, L.-P. Yang, T. Xiang, Coarse-graining renormalization by higher-order singular value decomposition. Phys. Rev. B 86, 045139 (2012)
222.
Y. Shimizu, Tensor renormalization group approach to a lattice boson model. Mod. Phys. Lett. A 27(06), 1250035 (2012)
223.
A. García-Sáez, J.I. Latorre, Renormalization group contraction of tensor networks in three dimensions. Phys. Rev. B 87, 085130 (2013)
224.
M.P. Qin, Q.N. Chen, Z.Y. Xie, J. Chen, J.F. Yu, H.H. Zhao, B. Normand, T. Xiang, Partial long-range order in antiferromagnetic Potts models. Phys. Rev. B 90(14), 144424 (2014)
225.
S. Wang, Z.-Y. Xie, J. Chen, B. Normand, T. Xiang, Phase transitions of ferromagnetic Potts models on the simple cubic lattice. Chin. Phys. Lett. 31(7), 070503 (2014)
226.
K. Roychowdhury, C.-Y. Huang, Tensor renormalization group approach to classical dimer models. Phys. Rev. B 91, 205418 (2015)
227.
H.-H. Zhao, Z.-Y. Xie, T. Xiang, M. Imada, Tensor network algorithm by coarse-graining tensor renormalization on finite periodic lattices. Phys. Rev. B 93, 125115 (2016)
228.
R. Orús, G. Vidal, Simulation of two-dimensional quantum systems on an infinite lattice revisited: corner transfer matrix for tensor contraction. Phys. Rev. B 80, 094403 (2009)
229.
R.J. Baxter, Variational approximations for square lattice models in statistical mechanics. J. Stat. Phys. 19, 461 (1978)
230.
Z.Y. Xie, H.C. Jiang, Q.N. Chen, Z.Y. Weng, T. Xiang, Second renormalization of tensor-network states. Phys. Rev. Lett. 103, 160601 (2009)
231.
M. Lubasch, J.I. Cirac, M.-C. Bañuls, Unifying projected entangled pair state contractions. New J. Phys. 16(3), 033014 (2014)
232.
S.S. Jahromi, R. Orús, A universal tensor network algorithm for any infinite lattice (2018). arXiv preprint:1808.00680
233.
L. Wang, F. Verstraete, Cluster update for tensor network states (2011). arXiv preprint arXiv:1110.4362
234.
S.-J. Ran, A. Piga, C. Peng, G. Su, M. Lewenstein. Few-body systems capture many-body physics: tensor network approach. Phys. Rev. B 96, 155120 (2017)
235.
J. Jordan, R. Orús, G. Vidal, F. Verstraete, J.I. Cirac, Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. Phys. Rev. Lett. 101, 250602 (2008)
236.
I. Pižorn, L. Wang, F. Verstraete, Time evolution of projected entangled pair states in the single-layer picture. Phys. Rev. A 83, 052321 (2011)
237.
R. Orús, Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems. Phys. Rev. B 85, 205117 (2012)
238.
M. Lubasch, J.I. Cirac, M.-C. Bañuls, Algorithms for finite projected entangled pair states. Phys. Rev. B 90, 064425 (2014)
239.
H.N. Phien, J.A. Bengua, H.D. Tuan, P. Corboz, R. Orús, Infinite projected entangled pair states algorithm improved: fast full update and gauge fixing. Phys. Rev. B 92, 035142 (2015)
240.
P. Corboz, Variational optimization with infinite projected entangled-pair states. Phys. Rev. B 94, 035133 (2016)
241.
T.G. Kolda, B.W. Bader, Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
242.
L. De Lathauwer, B. De Moor, J. Vandewalle, A multilinear singular value decomposition. SIAM. J. Matrix Anal. Appl. 21, 1253–1278 (2000)
243.
L. De Lathauwer, B. De Moor, J. Vandewalle, On the best rank-1 and rank-(R
1, R
2,…, R
N) approximation of higher-order tensors. SIAM. J. Matrix Anal. and Appl. 21(4), 1324–1342 (2000)
244.
L. De Lathauwer, J. Vandewalle, Dimensionality reduction in higher-order signal processing and rank-(R
1,R
2,…,R
N) reduction in multilinear algebra. Linear Algebra Appl. 391, 31–55 (2004). Special Issue on Linear Algebra in Signal and Image Processing
245.
L. De Lathauwer, A Link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM. J. Matrix Anal. Appl. 28(3), 642–666 (2006)
246.
E. Acar, S.A. Çamtepe, M.S. Krishnamoorthy, B. Yener, Modeling and Multiway Analysis of Chatroom Tensors (Springer, Heidelberg, 2005), pp. 256–268
247.
L. Ning, Z. Benyu, Y. Jun, C. Zheng, L. Wenyin, B. Fengshan, C. Leefeng, Text representation: from vector to tensor, in Fifth IEEE International Conference on Data Mining (ICDM’05) (IEEE, Piscataway, 2005)
248.
J.-T. Sun, H.-J. Zeng, H. Liu, Y.-C. Lu, Z. Chen, CubeSVD: a novel approach to personalized web search, in Proceedings of the 14th International Conference on World Wide Web (ACM, New York, 2005), pp. 382–390
249.
E. Acar, S.A. Çamtepe, B. Yener, Collective Sampling and Analysis of High Order Tensors for Chatroom Communications (Springer, Heidelberg, 2006), pp. 213–224
250.
J. Sun, S. Papadimitriou, P.S. Yu, Window-based tensor analysis on high-dimensional and multi-aspect streams, in Sixth International Conference on Data Mining (ICDM’06) (IEEE, Piscataway, 2006), pp. 1076–1080
251.
T.G. Kolda, B.W. Bader, J.P. Kenny, Higher-order web link analysis using multilinear algebra, in Fifth IEEE International Conference on Data Mining (ICDM’05) (IEEE, Piscataway, 2005), p. 8
252.
T.G. Kolda, B.W. Bader, The TOPHITS model for higher-order web link analysis, in Workshop on Link Analysis, Counterterrorism and Security, vol. 7 (2006), pp. 26–29
253.
B.W. Bader, R.A. Harshman, T.G. Kolda, Temporal analysis of semantic graphs using ASALSAN, in Seventh IEEE International Conference on Data Mining (ICDM 2007) (IEEE, Piscataway, 2007), pp. 33–42
254.
B. Du, M.-F. Zhang, L.-F. Zhang, R.-M. Hu, D.-C. Tao, PLTD: patch-based low-rank tensor decomposition for hyperspectral images. IEEE Trans. Multimedia 19(1), 67–79 (2017)
255.
N.D. Sidiropoulos, L. De Lathauwer, X. Fu, K.-J Huang, E.E. Papalexakis, C. Faloutsos, Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal Process. 65(13), 3551–3582 (2017)
256.
I.V. Oseledets, Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
257.
S.-J. Ran, Ab initio optimization principle for the ground states of translationally invariant strongly correlated quantum lattice models. Phys. Rev. E 93, 053310 (2016)
258.
S.-J. Ran, B. Xi, C. Peng, G. Su, M. Lewenstein, Efficient quantum simulation for thermodynamics of infinite-size many-body systems in arbitrary dimensions. Phys. Rev. B 99, 205132 (2019)
259.
S.R. White, R.L. Martin, Ab-initio quantum chemistry using the density matrix renormalization group. J. Chem. Phys. 110(9), 4127–4130 (1999)
260.
A.O. Mitrushenkov, G. Fano, F. Ortolani, R. Linguerri, P. Palmieri, Quantum chemistry using the density matrix renormalization group. J. Chem. Phys. 115(15), 6815–6821 (2001)
261.
K.H. Marti, I. M. Ondík, G. Moritz, M. Reiher, Density matrix renormalization group calculations on relative energies of transition metal complexes and clusters. J. Chem. Phys. 128(1), 014104 (2008)
262.
K.H. Marti, M. Reiher, The density matrix renormalization group algorithm in quantum chemistry. Zeitschrift für Physikalische Chemie 224(3-4), 583–599 (2010)
263.
G.K.-L. Chan, S. Sharma, The density matrix renormalization group in quantum chemistry. Ann. Rev. Phys. Chem. 62(1), 465–481 (2011). PMID: 2121(9144)
264.
S. Wouters, D. Van Neck, The density matrix renormalization group for ab initio quantum chemistry. Eur. Phys. J. D 68(9), 272 (2014)
265.
S. Sharma, A. Alavi, Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states. J. Chem. Phys. 143(10), 102815 (2015)
266.
C. Krumnow, L. Veis, Ö. Legeza, J. Eisert, Fermionic orbital optimization in tensor network states. Phys. Rev. Lett. 117, 210402 (2016)
267.
E. Ronca, Z.-D. Li, C.A.J.-Hoyos, G.K.-L. Chan, Time-step targeting time-dependent and dynamical density matrix renormalization group algorithms with ab initio Hamiltonians. J. Chem. Theory Comput. 13(11), 5560–5571 (2017). PMID: 28953377
268.
Y. Yao, K.-W. Sun, Z. Luo, H.-B. Ma, Full quantum dynamics simulation of a realistic molecular system using the adaptive time-dependent density matrix renormalization group method. J. Phys. Chem. Lett. 9(2), 413–419 (2018). PMID: 29298068
269.
F. Gebhard, E. Jeckelmann, S. Mahlert, S. Nishimoto, R.M. Noack, Fourth-order perturbation theory for the half-filled Hubbard model in infinite dimensions. Eur. Phys. J. B 36(4), 491–509 (2003)
270.
S. Nishimoto, F. Gebhard, E. Jeckelmann, Dynamical density-matrix renormalization group for the Mott–Hubbard insulator in high dimensions. J. Phys. Condens. Mat. 16(39), 7063–7081 (2004)
271.
D.J. Garc’ıa, K. Hallberg, M.J. Rozenberg, Dynamical mean field theory with the density matrix renormalization group. Phys. Rev. Lett. 93, 246403 (2004)
272.
K.A. Hallberg, New trends in density matrix renormalization. Adv. Phys. 55(5-6), 477–526 (2006)
273.
F.A. Wolf, I.P. McCulloch, O. Parcollet, U. Schollwöck, Chebyshev matrix product state impurity solver for dynamical mean-field theory. Phys. Rev. B 90, 115124 (2014)
274.
M. Ganahl, P. Thunström, F. Verstraete, K. Held, H.G. Evertz, Chebyshev expansion for impurity models using matrix product states. Phys. Rev. B 90, 045144 (2014)
275.
F.A. Wolf, I.P. McCulloch, U. Schollwöck, Solving nonequilibrium dynamical mean-field theory using matrix product states. Phys. Rev. B 90, 235131 (2014)
276.
F.A. Wolf, A. Go, I.P. McCulloch, A.J. Millis, U. Schollwöck, Imaginary-time matrix product state impurity solver for dynamical mean-field theory. Phys. Rev. X 5, 041032 (2015)
277.
M. Ganahl, M. Aichhorn, H.G. Evertz, P. Thunström, K. Held, F. Verstraete, Efficient DMFT impurity solver using real-time dynamics with matrix product states. Phys. Rev. B 92, 155132 (2015)
278.
D. Bauernfeind, M. Zingl, R. Triebl, M. Aichhorn, H.G. Evertz, Fork tensor-product states: efficient multiorbital real-time DMFT solver. Phys. Rev. X 7, 031013 (2017)
279.
A. Holzner, A. Weichselbaum, I.P. McCulloch, U. Schollwöck, J. von Delft. Chebyshev matrix product state approach for spectral functions. Phys. Rev. B 83, 195115 (2011)
280.
F.A. Wolf, J.A. Justiniano, I.P. McCulloch, U. Schollwöck, Spectral functions and time evolution from the Chebyshev recursion. Phys. Rev. B 91, 115144 (2015)
281.
J.C. Halimeh, F. Kolley, I.P. McCulloch, Chebyshev matrix product state approach for time evolution. Phys. Rev. B 92, 115130 (2015)
282.
B.-B. Chen, Y.-J. Liu, Z.-Y. Chen, W. Li, Series-expansion thermal tensor network approach for quantum lattice models. Phys. Rev. B 95, 161104 (2017)
283.
E. Tirrito, S.-J. Ran, A.J. Ferris, I.P. McCulloch, M. Lewenstein, Efficient perturbation theory to improve the density matrix renormalization group. Phys. Rev. B 95, 064110 (2017)
284.
L. Vanderstraeten, M. Mariën, J. Haegeman, N. Schuch, J. Vidal, F. Verstraete, Bridging perturbative expansions with tensor networks. Phys. Rev. Lett. 119, 070401 (2017)
285.
J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, F. Verstraete, Unifying time evolution and optimization with matrix product states. Phys. Rev. B 94, 165116 (2016)
286.
A. Milsted, J. Haegeman, T.J. Osborne, F. Verstraete, Variational matrix product ansatz for nonuniform dynamics in the thermodynamic limit. Phys. Rev. B 88, 155116 (2013)
287.
J. Haegeman, T.J. Osborne, F. Verstraete, Post-matrix product state methods: to tangent space and beyond. Phys. Rev. B 88, 075133 (2013)
288.
L. Vanderstraeten, M. Mariën, F. Verstraete, J. Haegeman, Excitations and the tangent space of projected entangled-pair states. Phys. Rev. B 92, 201111 (2015)
289.
V. Zauner-Stauber, L. Vanderstraeten, M.T. Fishman, F. Verstraete, J. Haegeman, Variational optimization algorithms for uniform matrix product states. Phys. Rev. B 97(4), 045145 (2018)
290.
Y.-J. Zou, A. Milsted, G. Vidal, Conformal data and renormalization group flow in critical quantum spin chains using periodic uniform matrix product states. Phys. Rev. Lett. 121, 230402 (2018)
291.
L. Vanderstraeten, J. Haegeman, F. Verstraete, Tangent-space methods for uniform matrix product states, in SciPost Physics Lecture Notes (2019), pp. 7
292.
T. Barthel, C. Pineda, J. Eisert, Contraction of fermionic operator circuits and the simulation of strongly correlated fermions. Phys. Rev. A 80, 042333 (2009)
293.
P. Corboz, R. Orús, B. Bauer, G. Vidal, Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states. Phys. Rev. B 81, 165104 (2010)
294.
P. Corboz, J. Jordan, G. Vidal, Simulation of fermionic lattice models in two dimensions with projected entangled-pair states: next-nearest neighbor Hamiltonians. Phys. Rev. B 82, 245119 (2010)
295.
I. Pizorn, F. Verstraete, Fermionic implementation of projected entangled pair states algorithm. Phys. Rev. B 81, 245110 (2010)
296.
C.V. Kraus, N. Schuch, F. Verstraete, J.I. Cirac, Fermionic projected entangled pair states. Phys. Rev. A 81, 052338 (2010)
297.
K.H. Marti, B. Bauer, M. Reiher, M. Troyer, F. Verstraete, Complete-graph tensor network states: a new fermionic wave function ansatz for molecules. New J. Phys. 12(10), 103008 (2010)
298.
P. Corboz, S.R. White, G. Vidal, M. Troyer, Stripes in the two-dimensional t − J model with infinite projected entangled-pair states. Phys. Rev. B 84, 041108 (2011)
299.
K.H. Marti, M. Reiher, New electron correlation theories for transition metal chemistry. Phys. Chem. Chem. Phys. 13, 6750–6759 (2011)
300.
Z.-C. Gu, Efficient simulation of Grassmann tensor product states. Phys. Rev. B 88, 0115139 (2013)
301.
P. Czarnik, J. Dziarmaga, Fermionic projected entangled pair states at finite temperature. Phys. Rev. B 90, 035144 (2014)
302.
Y. Shimizu, Y. Kuramashi, Grassmann tensor renormalization group approach to one-flavor lattice Schwinger model. Phys. Rev. D 90, 014508 (2014)
303.
E. Zohar, M. Burrello, T.B. Wahl, J.I. Cirac, Fermionic projected entangled pair states and local U(1) gauge theories. Ann. Phys. 363, 385–439 (2015)
304.
C. Wille, O. Buerschaper, J. Eisert, Fermionic topological quantum states as tensor networks. Phys. Rev. B 95, 245127 (2017)
305.
N. Bultinck, D.J. Williamson, J. Haegeman, F. Verstraete, Fermionic projected entangled-pair states and topological phases. J. Phys. A Math. Theor. 51(2), 025202 (2017)
306.
S. Yang, T.B. Wahl, H.-H. Tu, N. Schuch, J.I. Cirac, Chiral projected entangled-pair state with topological order. Phys. Rev. Lett. 114(10), 106803 (2015)
307.
L. Tagliacozzo, A. Celi, M. Lewenstein, Tensor networks for lattice gauge theories with continuous groups. Phys. Rev. X 4, 041024 (2014)
308.
E. Rico, T. Pichler, M. Dalmonte, P. Zoller, S. Montangero, Tensor networks for lattice gauge theories and atomic quantum simulation. Phys. Rev. Lett. 112, 201601 (2014)
309.
J. Haegeman, K. Van Acoleyen, N. Schuch, J.I. Cirac, F. Verstraete, Gauging quantum states: from global to local symmetries in many-body systems. Phys. Rev. X 5, 011024 (2015)
310.
X. Chen, A. Vishwanath, Towards gauging time-reversal symmetry: a tensor network approach. Phys. Rev. X 5, 041034 (2015)
311.
T. Pichler, M. Dalmonte, E. Rico, P. Zoller, S. Montangero, Real-time dynamics in U(1) lattice gauge theories with tensor networks. Phys. Rev. X 6, 011023 (2016)
312.
B. Buyens, S. Montangero, J. Haegeman, F. Verstraete, K. Van Acoleyen, Finite-representation approximation of lattice gauge theories at the continuum limit with tensor networks. Phys. Rev. D 95, 094509 (2017)
313.
K. Zapp, R. Orús, Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d. Phys. Rev. D 95, 114508 (2017)
314.
R.N.C. Pfeifer, P. Corboz, O. Buerschaper, M. Aguado, M. Troyer, G. Vidal, Simulation of anyons with tensor network algorithms. Phys. Rev. B 82, 115126 (2010)
315.
R. König, E. Bilgin, Anyonic entanglement renormalization. Phys. Rev. B 82, 125118 (2010)
316.
T.B. Wahl, H.H. Tu, N. Schuch, J.I. Cirac, Projected entangled-pair states can describe chiral topological states. Phys. Rev. Lett. 111(23), 236805 (2013)
317.
J. Dubail, N. Read, Tensor network trial states for chiral topological phases in two dimensions and a no-go theorem in any dimension. Phys. Rev. B 92(20), 205307 (2015)
318.
D. Poilblanc, J.I. Cirac, N. Schuch, Chiral topological spin liquids with projected entangled pair states. Phys. Rev. B 91(22), 224431 (2015)
319.
M. Mambrini, R. Orús, D. Poilblanc, Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry. Phys. Rev. B 94, 205124 (2016)
320.
C.-Y. Huang, T.-C. Wei, Detecting and identifying two-dimensional symmetry-protected topological, symmetry-breaking, and intrinsic topological phases with modular matrices via tensor-network methods. Phys. Rev. B 93, 155163 (2016)
321.
M. Gerster, M. Rizzi, P. Silvi, M. Dalmonte, S. Montangero, Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks (2017). arXiv preprint:1705.06515
322.
H.J. Liao, Z.Y. Xie, J. Chen, Z.Y. Liu, H.D. Xie, R.Z. Huang, B. Normand, T. Xiang, Gapless spin-liquid ground state in the S = 1∕2 Kagome Antiferromagnet. Phys. Rev. Lett. 118, 137202 (2017)
323.
C. Peng, S.-J. Ran, T. Liu, X. Chen, G. Su, Fermionic algebraic quantum spin liquid in an octa-kagome frustrated antiferromagnet. Phys. Rev. B 95, 075140 (2017)
324.
T. Liu, S.-J. Ran, W. Li, X. Yan, Y. Zhao, G. Su, Featureless quantum spin liquid, 1∕3-magnetization plateau state, and exotic thermodynamic properties of the spin-1∕2 frustrated Heisenberg antiferromagnet on an infinite Husimi lattice. Phys. Rev. B 89, 054426 (2014)
325.
S. Yang, L. Lehman, D. Poilblanc, K. Van Acoleyen, F. Verstraete, J.I. Cirac, N. Schuch, Edge theories in projected entangled pair state models. Phys. Rev. Lett. 112, 036402 (2014)
326.
T.B. Wahl, S.T. Haßler, H.-H. Tu, J.I. Cirac, N. Schuch, Symmetries and boundary theories for chiral projected entangled pair states. Phys. Rev. B 90, 115133 (2014)
327.
S.-J. Ran, W Li, S.-S. Gong, A. Weichselbaum, J. von Delft, G. Su, Emergent spin-1 trimerized valence bond crystal in the spin-1∕2 Heisenberg model on the star lattice (2015). arXiv preprint :1508.03451
328.
D.J. Williamson, N. Bultinck, M. Mariën, M.B. Şahinoğlu, J. Haegeman, F. Verstraete, Matrix product operators for symmetry-protected topological phases: gauging and edge theories. Phys. Rev. B 94, 205150 (2016)
329.
S.-H. Jiang, Y. Ran, Anyon condensation and a generic tensor-network construction for symmetry-protected topological phases. Phys. Rev. B 95, 125107 (2017)
330.
T. Prosen, M. Žnidarič, Matrix product simulations of non-equilibrium steady states of quantum spin chains. J. Stat. Mech. Theory Exp. 2009(02), P02035 (2009)
331.
F.A.Y.N. Schröder, A.W. Chin, Simulating open quantum dynamics with time-dependent variational matrix product states: towards microscopic correlation of environment dynamics and reduced system evolution. Phys. Rev. B 93, 075105 (2016)
332.
A.H. Werner, D. Jaschke, P. Silvi, M. Kliesch, T. Calarco, J. Eisert, S. Montangero, Positive tensor network approach for simulating open quantum many-body systems. Phys. Rev. Lett. 116, 237201 (2016)
333.
A. Kshetrimayum, H. Weimer, R. Orús, A simple tensor network algorithm for two-dimensional steady states. Nat. Commun. 8(1), 1291 (2017)
334.
D. Jaschke, S. Montangero, L.D. Carr, One-dimensional many-body entangled open quantum systems with tensor network methods. Quantum Sci. Tech. 4(1), 013001 (2018)
335.
R. Jozsa, On the simulation of quantum circuits (2006). arXiv preprint quant-ph/0603163
336.
D. Gross, J. Eisert, Novel schemes for measurement-based quantum computation. Phys. Rev. Lett. 98, 220503 (2007)
337.
I. Arad, Z. Landau, Quantum computation and the evaluation of tensor networks. SIAM J. Comput. 39(7), 3089–3121 (2010)
338.
D. Gross, J. Eisert, N. Schuch, D. Perez-Garcia, Measurement-based quantum computation beyond the one-way model. Phys. Rev. A 76, 052315 (2007)
339.
I.L. Markov, Y.-Y. Shi, Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38(3), 963–981 (2008)
340.
V. Giovannetti, S. Montangero, R. Fazio, Quantum multiscale entanglement renormalization ansatz channels. Phys. Rev. Lett. 101, 180503 (2008)
341.
K. Fujii, T. Morimae, Computational power and correlation in a quantum computational tensor network. Phys. Rev. A 85, 032338 (2012)
342.
T.H. Johnson, J.D. Biamonte, S.R. Clark, D. Jaksch, Solving search problems by strongly simulating quantum circuits. Sci. Rep. 3, 1235 (2013)
343.
A.J. Ferris, D. Poulin, Tensor networks and quantum error correction. Phys. Rev. Lett. 113, 030501 (2014)
344.
I. Dhand, M. Engelkemeier, L. Sansoni, S. Barkhofen, C. Silberhorn, M.B. Plenio, Proposal for quantum simulation via all-optically-generated tensor network states. Phys. Rev. Lett. 120, 130501 (2018)
345.
C. Bény, Deep learning and the renormalization group (2013). arXiv:1301.3124
346.
J.A. Bengua, H.N. Phien, H.D. Tuan, Optimal feature extraction and classification of tensors via matrix product state decomposition, in 2015 IEEE International Congress on Big Data, pp. 669–672 (IEEE, Piscataway, 2015)
347.
A. Novikov, D. Podoprikhin, A. Osokin, D.P. Vetrov, Tensorizing neural networks, in Advances in Neural Information Processing Systems, ed. by C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (Curran Associates, Red Hook, 2015), pp. 442–450
348.
D. Liu, S.-J. Ran, P. Wittek, C. Peng, R.B. Garc’ia, G. Su, M. Lewenstein, Machine Learning by Unitary Tensor Network of Hierarchical Tree Structure. New J. Phys. 21, 073059 (2019)
349.
J. Chen, S. Cheng, H.-D. Xie, L. Wang, T. Xiang, On the equivalence of restricted Boltzmann machines and tensor network states (2017). arXiv:1701.04831
350.
Y.-C. Huang, J.E. Moore, Neural network representation of tensor network and chiral states (2017). arXiv:1701.06246
351.
Z.-Y. Han, J. Wang, H. Fan, L. Wang, P. Zhang, Unsupervised generative modeling using matrix product states (2017). arXiv:1709.01662
352.
Y. Levine, D. Yakira, N. Cohen, A. Shashua, Deep learning and quantum physics: a fundamental bridge (2017). arXiv:1704.01552
353.
A.J. Gallego, R. Orus, The physical structure of grammatical correlations: equivalences, formalizations and consequences (2017). arXiv:1708.01525
354.
C. Guo, Z.-M. Jie, W. Lu, D. Poletti, Matrix product operators for sequence-to-sequence learning. Phys. Rev. E 98, 042114 (2018)
355.
A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q.-B. Zhao, D.P. Mandic, et al. Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions. Found. Trends® Mach. Learn. 9(4-5), 249–429 (2016)
356.
A. Cichocki, A.-H. Phan, Q.-B. Zhao, N. Lee, I. Oseledets, M. Sugiyama, D.P. Mandic, et al. Tensor networks for dimensionality reduction and large-scale optimization: Part 2 applications and future perspectives. Found. Trends® Mach. Learn. 9(6), 431–673 (2017)
357.
I. Glasser, N. Pancotti, J.I. Cirac, Supervised learning with generalized tensor networks (2018). arXiv preprint:1806.05964
358.
E.M. Stoudenmire, Learning relevant features of data with multi-scale tensor networks. Quantum Sci. Tech. 3(3), 034003 (2018)
359.
C. Chen, K. Batselier, C.-Y. Ko, N. Wong, A support tensor train machine (2018). arXiv preprint:1804.06114
360.
S. Cheng, L. Wang, T. Xiang, P. Zhang, Tree tensor networks for generative modeling (2019). arXiv preprint:1901.02217
361.
M. Espig, W. Hackbusch, S. Handschuh, R. Schneider, Optimization problems in contracted tensor networks. Comput. Vis. Sci. 14(6), 271–285 (2011)
362.
A. Cichocki, Era of big data processing: a new approach via tensor networks and tensor decompositions (2014). arXiv preprint:1403.2048
363.
J.D Biamonte, J. Morton, J. Turner, Tensor network contractions for# SAT. J. Stat. Phys. 160(5), 1389–1404 (2015)
364.
M. Bachmayr, R. Schneider, A. Uschmajew, Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations. Found. Comput. Math. 16(6), 1423–1472 (2016)
365.
Z.-C. Yang, S. Kourtis, C. Chamon, E.R. Mucciolo, A.E. Ruckenstein, Tensor network method for reversible classical computation. Phys. Rev. E 97, 033303 (2018)
366.
S. Kourtis, C. Chamon, E.R Mucciolo, A.E. Ruckenstein, Fast counting with tensor networks (2018). arXiv preprint:1805.00475
367.
D.P.-García, M. Sanz, C.E. González-Guillén, M.M. Wolf, J.I. Cirac, Characterizing symmetries in a projected entangled pair state. New J. Phys. 12(2), 025010 (2010)
368.
A. Weichselbaum, Non-abelian symmetries in tensor networks: a quantum symmetry space approach. Ann. Phys. 327, 2972–3047 (2012)
369.
N. Schuch, I. Cirac, D. Pérez-García, PEPS as ground states: degeneracy and topology. Ann. Phys. 325(10), 2153–2192 (2010)
370.
S. Singh, R.N.C. Pfeifer, G. Vidal, Tensor network decompositions in the presence of a global symmetry. Phys. Rev. A 82, 050301 (2010)
371.
S. Singh, R.N.C. Pfeifer, G. Vidal, Tensor network states and algorithms in the presence of a global U(1) symmetry. Phys. Rev. B 83, 115125 (2011)
372.
R. Orús, Advances on tensor network theory: symmetries, fermions, entanglement, and holography. Eur. Phys. J. B. 87(11), 280 (2014)
373.
B. Bauer, P. Corboz, R. Orús, M. Troyer, Implementing global abelian symmetries in projected entangled-pair state algorithms. Phys. Rev. B 83, 125106 (2011)
374.
S. Singh, G. Vidal, Tensor network states and algorithms in the presence of a global SU(2) symmetry. Phys. Rev. B 86, 195114 (2012)
375.
L. Tagliacozzo, A. Celi, M. Lewenstein, Tensor networks for lattice gauge theories with continuous groups. Phys. Rev. X 4, 041024 (2014)
376.
R. Orús, Advances on tensor network theory: symmetries, fermions, entanglement, and holography. Eur. Phys. J. B. 87(11), 280 (2014)
377.
M. Rispler, K. Duivenvoorden, N. Schuch, Long-range order and symmetry breaking in projected entangled-pair state models. Phys. Rev. B 92, 155133 (2015)
378.
S.-H. Jiang, Y. Ran, Symmetric tensor networks and practical simulation algorithms to sharply identify classes of quantum phases distinguishable by short-range physics. Phys. Rev. B 92, 104414 (2015)
379.
H.-Y. Lee, J.-H. Han, Classification of trivial spin-1 tensor network states on a square lattice. Phys. Rev. B 94, 115150 (2016)
380.
E. Zohar, M. Burrello, Building projected entangled pair states with a local gauge symmetry. New J. Phys. 18(4), 043008(2016)
381.
M.C. Bañuls, M.B. Hastings, F. Verstraete, J.I. Cirac, Matrix product states for dynamical simulation of infinite chains. Phys. Rev. Lett. 102, 240603 (2009)
382.
A. Müller-Hermes, J.I. Cirac, M.-C. Bañuls, Tensor network techniques for the computation of dynamical observables in one-dimensional quantum spin systems. New J. Phys. 14(7), 075003 (2012)
383.
M.B. Hastings, R. Mahajan, Connecting entanglement in time and space: improving the folding algorithm. Phys. Rev. A 91, 032306 (2015)
384.
S. Yang, Z.C. Gu, X.G. Wen, Loop optimization for tensor network renormalization. Phys. Rev. Lett. 118, 110504 (2017)
385.
Z.-Y. Xie, H.-J. Liao, R.-Z. Huang, H.-D. Xie, J. Chen, Z.-Y. Liu, T. Xiang, Optimized contraction scheme for tensor-network states. Phys. Rev. B 96, 045128 (2017)