IndexIndex

 
 

AAS theorem, 159

Abel, Niels, 47

absolute value, 302

absolutely convergent, 302

algebra, 20

    distributive law, 29–30

    FOIL rule of, 30–36, 38

    fundamental theorem of, 46, 141, 234

    golden rule of, 27

    graphs and, 41–47

    rules of, 26–30

    shifty, 283, 298–299

    solving for x, 36–40

    solving for y, 48–49

alternate interior angles, 157

alternating series, 295

altitude of triangle, 172

“American Pi” (Lesser), 202

angles

    alternate interior, 157

    bisector, 160

    corresponding, 156–157

    perpendicular, 155

    right, 155

    sums of, 156 (fig.)

    sums of, of pentagon, 167 (fig.)

    supplementary, 155–156, 213

    vertical, 156

anti-derivatives, 296

approximations, 128

arc sine function, 214

Archimedes, 196

area, 169–172

    of circles, 182–193

    of ellipses, 190 (fig.)

    of rectangles, 108–109, 152

    of square, 173–174

    surface, 191, 192

    of triangles, 171, 187, 217

arithmetic, fundamental theorem of, 141

ASA theorem, 159

axioms, 125

    corresponding angle, 157

    of Euclid, 153–154

    SAS, 159

base ten, 61–62

basepoints, 277

bell curve, 194

    formula, 247 (fig.)

Benjamin, Arthur, 322

binary arithmetic, 297–298

binary representation, 139

Binet’s formula, 232

    Fibonacci numbers and, 116

    for Lucas numbers, 118

binomial coefficients, 76–77

    Pascal’s identity and, 87

birthdays, 304–305

“Blowin’ in the Wind” (Dylan), 133

Brown, Dan, 119

Brown, Ethan, 201

cadences, 102–103

Caesar, Julius, 64

calculus, 162

    differential, 257

    integral, 257

    magic of, 255–263

calendar

    calculating, 63–70

    Gregorian, 64

    history of, 64

    Julian, 64

    leap years, 64

    mnemonics for, 65–66

    month codes, 66–67

    weekday names, 66

    year codes, 67–68

Camp, Dane, 133

Cantor, Georg, 289

cards, decks of, 73

    See also poker hands

Carroll, Lewis, 199

casting out nines, 53–59

    division and, 57–58

    multiplication and, 56–57

central angle theorem, 186

Cervantes, Miguel de, 64–65

chain rule, 271–272

check digit, 62

checkerboards

    dominos covering, 122–123

    trominos covering, 137

circles, 155

    area of, 182–193

    circumference of, 182–193

    diameter of, 182–183

    magic of, 181–182

    major arc of, 186

    minor arc of, 186

    radius of, 182, 185

    trigonometry and, 210–219

    unit, 188, 210, 237, 238 (fig.)

circumference, 182–193

    definition of, 183

circumscribed polygons, 196

clinometer, 208

clocks, 60 (fig.)

coefficients, 32–33

    binomial, 76–77, 87

College Mathematics Journal, 119

combinations, 76

combinatorial proof, 87, 131

combinatorics, 71, 75

commutative property, 9

complements, 16–17

completing the square, 39–40

complex numbers, 233–240

complex plane, 235

    unit circle in, 238 (fig.)

complex roots, 46

composite numbers, 112, 141

compound interest, 242

concavity, 275

conditionally convergent, 301

cone, 192

congruences, 60–61

congruent objects, 158

congruent triangles, 158 (fig.)

constant terms, 33

constructive proofs, 130

contradiction, 126

convergence, 290–291

    absolute, 302

    conditional, 301

converse statements, 126

corollaries, 129

corresponding angles, 156

    axiom, 157

cosecant function, 208

cosine function, 206, 212 (fig.)

    graphs of, 228 (fig.)

cosines, law of, 215, 216

cotangent function, 208

countability, 288

counterexamples, 126

counting, 29

    Fibonacci numbers, 102–110

critical points, 264

cryptography, 145–146

cubes

    sums of, 11–12

    sums of, identity, 136

cubics, 44

cylinder

    surface area of, 191

    volume of, 191

da Vinci, Leonardo, 119

The Da Vinci Code (Brown, D.), 119

degree of polynomials, 44

delegations, 139

denominators, 23

derivatives, 228

    product rule for, 266–268

Descartes, René, 41

diameter, 182–183

differences of squares formula, 14, 33

    proof of, 34

differential calculus, 257

differentiation, 261

    rules, 265–274

digital roots, 54

Dirichlet, Peter, 147

distinct powers, 94

distributive law

    definition of, 29

    FOIL and, 31

    illustration of, 29–30

    negative numbers and, 30

divergence, 291

dividing by zero,

division

    mental, 20–24

    number of digits, 22

domino, 107

    on checkerboard, 122–123

Dunham, Douglas, 154

Dylan, Bob, 133

e (number), 240–250

Earth’s equator, 181–182, 184

The Elements (Euclid), 153

eleven, 60–63

ellipses, 189

    area of, 190 (fig.)

    foci of, 190

encryption, 145–146

endpoints, average of, 164 (fig.)

equations

    beautiful, 232

    linear, 36–37

    quadratic, 37, 39–40

    solving, 36–40

equilateral triangle, 159, 161, 205

Escher, M. C., 154

estimation

    mental, 20–24

    of number of digits, 21–22

Euclid, 121, 144–145

    axioms of, 153–154

Euclidean geometry, 154

Euler, Leonhard, 146–147, 231

Euler-Mascheroni constant, 292

Euler’s equation, 251–253

even numbers theorem, 125–126

exclamation points, 71–72

existence proof, 129

exponential decay, 243

exponential formula, 242

exponential functions, 243 (fig.), 265

exponentiation, law of, 129

exponents, law of, 47

factorials, 71–72

factoring method, 19, 38

fast mental calculations, 12–24

Fermat, Pierre de, 41

    on prime numbers, 145

Feynman, Richard, 294

Fibonacci numbers, 2, 178, 232

    addition of squares of, 108

    applications of, 99

    Binet’s formula and, 116

    consecutive, 111

    counting, 102–110

    distant neighbors, 109–110

    first six, 1, 1, 2, 3, 5, 8

    first thirteen, 99 (table)

    greatest common divisors of, 112

    induction and, 109, 134

    limericks and, 120

    Lucas numbers and, 117 (table)

    magic of, 97–102, 113 (table)

    multiplication of, 109 (table), 110 (table)

    in nature, 99

    neighbors, 109

    Pascal’s triangle and, 95, 103–104

    patterns, 110–120

    poetry of, 120 (table)

    prime, 112–113

    rabbits, 97–99

    relatively prime, 111

    sequences that add to n, 103 (table)

    shifting, 103

    squares of, 106 (table)

    sum of even, 100–101

    sum of odd, 102

    as tilings, 105

Fibonacci sequence, 97

financial transactions, 145–146

flushes, 79–80

foci of ellipses, 190

FOIL rule, 30–36, 38, 57, 234

    applications of, 32

    distributive law and, 31

football fields, 151–152

formulas

    bell curve, 247 (fig.)

    Binet’s, 116, 118, 232

    differences of squares, 14, 33, 34

    exponential, 242

    Hero’s, 219

    quadratic, 38

    Wallis’s, 197

four of a kind, 81

fractions, addition of, 127–128

full house, 80

fundamental theorem of algebra, 46, 234

fundamental theorem of arithmetic, 141

Gadbois, Steve, 83

Gauss, Karl Friedrich, 10, 20

    number patterns, 5–6

geometric series, 280–290

    finite, 283

    infinite, 284–286

geometrical proofs, 136

geometry

    classics, 153–169

    of complex numbers, 235–240

    Euclidean, 154

    hyperbolic, 154

    magic of, 149–153, 178–179

    plane, 154

goalposts, 151–152, 177

God’s equation, 2, 231

    proof of, 252

Goldbach’s conjecture, 147

golden ratio, 2, 115

    cultural perceptions of, 119

    naming of, 118

    properties of, 119

golden rectangle, 119

golden rule of algebra, 27

Google, 244

graphs

    algebra and, 41–47

    lines in, 41

    ordered pairs and, 41

    parabolas, 43–44

    parallel, 42

    slope in, 41

    x-axis of, 41

    y-axis of, 41–42

    y-intercept in, 41

great circles, 154

greatest common divisors, 112

Gregorian calendar, 64

Gregory XIII (Pope), 64

Guinness Book of World Records, 198

Hardy, G. H., 121

harmonic series, 290–294

Hartl, Michael, 201

Harvey Mudd College, 3

Hemachandra, 102

Hero’s formula, 219

hexadecimal system, 61–62

hexagons, 195–196

hockey stick identity, 89–90, 90 (fig.)

hockey teams, 89–90

hyperbolic geometry, 154

hypotenuse, 173

i (number), 232

ice cream flavors, 76–77

identity

    hockey stick, 89–90, 90 (fig.)

    Pascal’s, 86, 87

    sum of cubes, 136

    trigonometric, 219–225

if-then theorem, 125

imaginary axis, 235

imaginary numbers, 2, 37, 233

induction

    Fibonacci numbers and, 109, 134

    proof by, 131–140

    strong, 140

index, 311

infinite integers, 298

infinite series, 45

    geometric, 284–286

    impossible, 294–302

infinity, 279–280

inscribed hexagons, 195–196

integers, 125

    composite, 141

    infinite, 298

integral calculus, 257

integration, 296

interest, compound, 242

Internet, 145–146

The Interview (film), 28

inverse trigonometric functions, 214, 215 (fig.)

irrational numbers, 127–131

ISBN, 62–63

isosceles right triangle, 204

isosceles triangles, 159

    theorem, 151, 160

“Jabberwocky” (Carroll), 199

Jackson, Andrew, 247

joker, 83

Julian calendar, 64

junk hands (poker), 82

Keith, Mike, 198, 199

Kilmer, Joyce, 253

Lambert, Johann Heinrich, 197

laws

    of cosines, 215, 216

    of exponentiation, 129

    of exponents, 47

    of sines, 218–219

leap years, 64

legs, 173

lemmas, 268

length, products and, 238

Leonardo of Pisa, 97

Lesser, Larry, 133, 202

Liber Abaci (Leonardo of Pisa), 97

license plates, 75

limericks, 120

limits, 260

    products of, 262

    of quotients, 262

    sums and, 262

linear approximation, 276

linear equations, 36–37

lines

    in graphs, 41

    midpoint of, 164 (fig.)

    parallel, 156

    secant, 258

    tangent, 257, 259 (fig.)

logarithms, 243–244

    natural, 245, 272

lotteries, 76–84

lowest terms, 128

Lu, Chao, 198

Lucas, Édouard, 117

Lucas numbers

    Binet’s formula for, 118

    Fibonacci numbers and, 117 (table)

magic

    of algebra, 25–26

    of calculus, 255–263

    of circles, 181–182

    of Fibonacci numbers, 97–102, 113 (table)

    of geometry, 149–153, 178–179

    of infinity, 279–280

    mathematics and, 1

    of nine, 51–52

    numbers and, 51–53

    squares, 302–305

major arc, 186

major system, 199

Markowski, George, 119

Marloshkovips, Tony, 199

Mars, 143

matching problem, 248

mathematics

    laws of, 121

    magic and, 1

    permanence and, 121

max-min problems, 264–265

mediant, 115

memory palace, 202

mental calculations

addition, 15

    division, 20–24

    estimation, 20–24

    fast, 12–24

    multiplication, 17–20

    subtraction, 16–17

Mertens constant, 292

midpoint, 161

    of line, 164 (fig.)

    triangle, 165

minor arc, 186

“Misconceptions About the Golden Ratio” (Markowski), 119

modular arithmetic, 60–63

month codes, 66–67

mountain heights, 203–204, 209, 218

multiples of nine, 52–53

multiplication

    addition method, 18

    casting out nines and, 56–57

    of close numbers, 34–35

    commutative property of, 9

    of Fibonacci numbers, 109 (table), 110 (table)

    mental, 17–20

    of negative numbers, 30

    of numbers close to 100, 14–15

    subtraction method in, 18

    table, 21 (table), 23–24

    See also products

my favorite number, 2520

    why?, 141

natural logarithm, 245, 272

negative numbers, 37

    distributive law and, 30

    multiplication of, 30

Newton, Isaac, 47

n-gon, 166

nine (number)

    casting out, 53–59

    magic of, 51–52

    multiples of, 52–53

Not a Wake (Keith), 199

number patterns, 5–12

    beauty of, 12

    factorial, 73 (table)

    Fibonacci, 110–120

    Gauss and, 5–6

numbers

    complex, 233, 235–240

    composite, 112

    even, 125–126

    imaginary, 2, 37, 233

    interesting, 147

    irrational, 127–131

    magic and, 51–53

    negative, 30, 37

    odd, 7, 10–11, 92–93, 126, 131–132

    Pascal’s triangle with, 85

    perfect, 146

    rational, 127–131

    real, 37

    relatively prime, 111

    study of, 5

    sum of first 100, 5–6

    sum of first n, 7

    sum of first n even, 7

    sum of first n odd, 7

    triangular, 6–7

obtuse triangle, 159

odd numbers

    in Pascal’s triangle, 92–93

    sum of first n, 7

    sums of, 131–132

    theorem about, 126

    in triangles, 10–11

one (number), 140–141

one pair, 81

1.61, 113–115

optimization, 255

    theorem, 264–265

ordered pairs, 41

origin, 210

oversubtracting, 16

Pacioli, Luca, 119

Palais, Bob, 201

parabolas, 43

    properties of, 44

    vertex of, 44

parallel, 42

parallel lines, 156

parallelograms, 150

partial sums, 282

Pascal’s identity, 86

    binomial coefficients and, 87

Pascal’s triangle, 84–95

    addition of numbers in, 86–87

    Fibonacci numbers and, 95, 103–104

    odd numbers in, 92–93

    patterns in, 92

    as right triangle, 89

    symmetry in, 85

pentagons, 166

    sums of angles of, 167 (fig.)

perfect numbers, 146

perfect squares, 8

perimeters, 169–172

    of inscribed hexagons, 195–196

    of rectangles, 152

period, 229

permutations, 76

perpendicular angles, 155

perpendicular bisectors, 161

phonetic codes, 199

pi, 2, 52, 183–184

    celebrating, 198–202

    digits of, 195–197

    memorizing, 198–202

    surprising appearance of, 193–195

    transcendental, 197

Pi-Day, 198

pizza, 187–188, 193

plane geometry, 154

plus or minus symbol, 38

Poe, Edgar Allan, 198–199

poetry, 120 (table)

poker hands, 76–78

    flushes, 79–80

    four of a kind, 81

    full house, 80

    jokers in, 83

    junk, 82

    one pair, 81

    straight, 80

    straight flush, 80

    three of a kind, 81

    two pair, 81

    value of, 83–84

    wild cards, 83

polar form, 238

polygons, 166

    circumscribed, 196

    triangulation of, 168

polyhedrons, 232

polynomials

    cubic, 44

    degree of, 44

    quadratic, 44

    quartic, 44

    quintic, 44

    roots of, 45

    Taylor, 276

population dynamics, 97–99

postulates. See axioms

power rule, 61, 263

prime numbers

    Fermat on, 145

    Fibonacci, 112–113

    infinitely many, 144–145

    proofs and, 140–147

    relatively, 111

    two as, 140–141

    Wilson’s theorem on, 144

product rule

    for derivatives, 266–268

    proofs, 266

products

    of complex numbers, 238–240

    length and, 238

    of limits, 262

    of numbers that add to 20, 12 (table)

    rule of, 73–76

proofs

    by algebra, 139

    axioms in, 125

    combinatorial, 87, 131

    constructive, 130

    by contradiction, 126

    converse statements in, 126

    counterexamples in, 126

    existence, 129

    geometrical, 136

    of God’s equation, 252

    by induction, 131–140

    involving trominos, 137–138

    irrational numbers, 127–131

    of negatives, 121–122

    product rule, 266

    of Pythagorean theorem, 173–174

    of quotient rule, 271

    rational numbers, 127–131

    strong induction, 140

    of sum of cubes identity, 136

    of unique factorization theorem, 142

    value of, 121–127

pseudoprimes, 145

public key cryptography, 145–146

Pythagorean theorem, 173–177

    in area of square calculation, 173–174

    proofs of, 173–174

Pythagorean triple, 205

quadrants, 214

quadratic equations, 37

    completing squares, 39–40

quadratic formula, 38

quadratic functions, 43

quadratic polynomials, 44

quadrilaterals, 166

    definition, 149

    midpoints of, 150 (fig.)

quartics, 44

quintics, 44

quotients

    of limits, 262

    rule, 270–271

rabbits, 97–99

radians, 226–230

radius, 182, 185

Ramanujan, Srinivasa, 189

rational numbers

    averages of, 128

    proofs, 127–131

“The Raven” (Poe), 198–199

real line, 232

real numbers, 37

reciprocals, 23

rectangles, 7 (fig.)

    area of, 108–109, 152

    fences, 150–151

    golden, 118, 119

    perimeters of, 152

reflections, 162, 273

relatively prime numbers, 111

right angles, 155

right triangles

    isosceles, 204

    Pascal’s triangle as, 89

roots

    complex, 46

    digital, 54

    of polynomials, 45

    square, 37

rule of products, 73–76

rule of sum, 73–76

SAS axiom, 159

secant function, 208

secant line, 258

    slope of, 260 (fig.)

Secrets of Mental Math (Benjamin and Shermer), 62

semi-perimeter, 219

Shakespeare, William, 64–65

shifty algebra, 283, 298–299

Sierpinski triangle, 93

sine function, 206, 212 (fig.)

    graphs of, 228 (fig.)

sines, law of, 218–219

slant height, 192

slope, 258

    in graphs, 41

    of secant line, 260 (fig.)

solving for x, 36–40

solving for y, 48–49

sphere, 191

square root, 37

squares, 8 (fig.)

    addition of, of Fibonacci numbers, 108

    addition of consecutive, 106

    area of, 173–174

    difference of, 14, 33–34

    of Fibonacci numbers, 106 (table)

    magic, 302–305

    perfect, 8

    quick calculations of, 13–14

SSS theorem, 161

Stirling’s approximation, 193–194, 232

straight, 80

straight flush, 80

strong induction, 140

subtraction

    complements in, 16

    mental, 16–17

    method in multiplication, 18

sums

    of angles, 156 (fig.)

    of angles of pentagon, 167 (fig.)

    of cubes, 11–12

    of cubes identity, 136

    of even-positioned Fibonacci numbers, 100–101

    of first 100 numbers, 5–6

    of first n even numbers, 7

    of first n numbers, 7

    of first n odd numbers, 7

    limits and, 262

    of numbers in multiplication table, 21, 23–24

    of odd numbers, 131–132

    of odd-positioned Fibonacci numbers, 102

    partial, 282

    rule of, 73–76

    See also addition

supplementary angles, 155–156, 213

surface area

    of cone, 192

    of cylinder, 191

    of sphere, 191

syllables, 102–103

symmetry in Pascal’s triangle, 85

tangent function, 206

tangent line, 257

    approximation of, 259 (fig.)

tau, 201

Taylor, Brook, 275

Taylor polynomials, 276

Taylor series, 274–278

Tetris, 124

The, 1–310

theorems

    AAS, 159

    ASA, 159

    central angle, 186

    even numbers, 125–126

    if-then, 125

    odd numbers, 126

    optimization, 264–265

    Pythagorean, 173–177

    SSS, 159, 161

30-60-90 triangle, 205

three of a kind, 81

tilings

    breakable, 106

    Fibonacci numbers as, 105

    identities, 107

    unbreakable, 106

transcendental, 197

tree heights, 208–209

triangles, 6–7, 158

    altitude of, 172

    area of, 171, 187, 217

    congruent, 158 (fig.)

    equilateral, 159, 161, 205

    isosceles, 151, 159, 160

    isosceles right, 204

    midpoint theorem, 165

    obtuse, 159

    right, 89, 204

    Sierpinski, 93–94

    30–60–90, 205

    See also Pascal’s triangle

triangular numbers, 6–7

triangulation, 168

trigonometric graphs, 226–230

trigonometric identities, 219–225

trigonometry, 201, 204

    circles and, 210–219

trominos, 137

“The Twelve Days of Christmas,” 90–91

twin primes, 147

two pair, 81

unbreakable tilings, 106

uncountable sets, 289

unique factorization theorem, 141

    proof of, 142

unit, 141

unit circle, 188, 210, 237, 238 (fig.)

variables, 26

vertex, 44

vertical angle theorem, 156

volume, 191

von Lindemann, Ferdinand, 197

Wallis’s formula, 197

water fountain, 44 (fig.)

weekday names, 66

wild cards, 83

Wilson’s theorem, 144

x, solving for, 36–40

x-axis, 41

y, solving for, 48–49

y-axis, 41–42

year codes, 67–68

y-intercept, 41

zip codes, 75