INDEX

Note: Page numbers referring to figures and tables are followed by an italicized f or t respectively.

A

activation functions

common, 178t180t

defined, 178

add_edge function, 41

add_node function, 4950

add_question function, 112

add arithmetic instruction, 15

ADS (Alternate Data Streams), 29

Advanced Persistent Threat 1 attacker group. See APT1 attacker group

advanced persistent threats (APTs), 60

Allaple.A malware family, 157, 157f

Alternate Data Streams (ADS), 29

anti-disassembly techniques, 22

API calls, 3233, 33f

apply_hashing_trick function, 138

APT1 (Advanced Persistent Threat 1) attacker group, 3739, 38f, 4547, 45f47f, 61, 61f, 76, 76f, 86, 222223

APTs (advanced persistent threats), 60

ArchSMS family of Trojans, 55

area under the curve (AUC), 209210, 210f, 213

arithmetic instructions, 15, 15t

.asarray method, 142

assembly language, defined, 12. See also x86 assembly language

AT&T, 43

AT&T syntax, 13

attributes, 37

adding to nodes and edges, 42

and edges, 4851

AUC (area under the curve), 209210, 210f, 213

autoencoder neural networks, 194195, 195f

automatic feature generation, 188

B

backpropagation, 190192, 190f191f

bag of features model, 6264, 63f

features, defined, 62

Jaccard index and, 65

N-grams, 6364, 64f

order information and, 6364

overview, 6263

bar charts (histograms), 168170, 168f169f

base virtual memory address, 6

basic blocks, 1920

bias parameter, 104

bias term, 178, 181

bipartite networks, 3739, 38f

bitcoin mining, 158, 160161, 168f, 172f173f, 173

C

callbacks

built-in (Keras package), 212

creating shared callback relationship network, 5154

custom, 213214, 214f

call instruction, 1718

capstone module, 20

Carerra, Ero, 5

chain rule, 191192

cmp instruction, 18

CNNs (convolutional neural networks), 193194, 194f

coarsenings, 46

color attribute, 49

comment_sample function, 8284

COMMENT mode, 229

compile method, 202

compressed_data_weight parameter, 103

compressed_data parameter, 103104

conditional branches, defined, 15

control flow, 17

graphs, 1920, 19f

instructions, 1718

registers, 1415

convolutional neural networks (CNNs), 193194, 194f

CPU registers, 1315, 14f

general-purpose registers, 1314

stack and control flow registers, 1415

cross_validation module, 151

cross-validation, 150153, 151f, 153f

CuckooBox software platform, 27, 3334, 59

“curse of dimensionality,” 92

cv_evaluate function, 151

D

dapato malware family, 62, 67f68f, 70f72f

DataFrame objects, 158161

data movement instructions, 1520, 16t

basic blocks, 1920, 19f

control flow graphs, 1920, 19f

control flow instructions, 1718

stack instructions, 1617

data science, iii, iv

applying to malware, v

importance of, ivv

.data section (in PE file format), 4

dateutil package, 164

dec arithmetic instruction, 15

decision boundaries, 9398, 95f98f

identifying with k-nearest neighbors, 9798, 97f98f

identifying with logistic regression, 9697, 96f97f

overfit machine-learning model, 100, 101f

underfit machine-learning model, 99, 99f

well-fit machine-learning model, 100, 100f

decision thresholds, 149

DecisionTreeClassifier class, 130

decision trees, 109115, 109f110f, 113f114f

decision tree–based detectors, 129

importing modules, 129

initializing sample training data, 130

instantiating classes, 130

sample code, 133134

training, 130131

visualizing, 131133, 132f

follow-up questions, 111

limiting depth or number of questions, 111112

pseudocode for, 112113

root node, 110111

when to use, 114115

deep learning, 175197, 216. See also neural networks

automatic feature generation, 188

building neural networks, 182188

neurons, 176

anatomy of, 177180

networks of, 180181

overview, 176177

training neural networks, 189193

types of neural networks, 193197

universal approximation theorem, 181182

deep neural networks. See neural networks

Dense function, 200201

describe method, 159

detection accuracy evaluation, 119126, 146153

base rates and precision, 124126

effect of base rate on precision, 124125

estimating precision in deployment environment, 125126

with cross-validation, 150153, 151f, 153f

neural networks, 209211, 210f211f

possible detection outcomes, 120, 120f

with ROC curves, 123124, 123f, 147150, 150f

true and false positive rates, 120124

relationship between, 121122, 121f122f

ROC curves, 123124, 123f

DictVectorizer class, 128130

directed graphs, 180

distance functions, 107

DLLs (dynamic-link libraries), 13

DOS header (in PE file format), 3

.dot format, 42

dynamically downloaded data, 2223

dynamic analysis, 2534

bag of features model, 63

dataset for, 222

for disassembly, 26

limitations of, 3334

for malware data science, 26

typical malware behaviors, 27

using malwr.com, 2633

analyzing results, 2833

limitations, 33

loading files, 2728

dynamic API call–based similarity, 72, 72f

dynamic-link libraries (DLLs), 13

E

EAX register, 14

EBP register, 14

EBX register, 14

ECX register, 14

edges, 37

adding attributes, 42

adding to shared relationship networks, 41

adding visual attributes to, 4851

color, 49, 49f

text labels, 5051

width, 4849, 48f

EDX register, 14

EFLAGS register, 15

EIP register, 1415

ELU activation function, 179t

entry point, 3, 19

epochs parameter, 206

ESP register, 14

euclidean_distance function, 107

Euclidean distance, 107

evaluate function, 148

evaluate mode, 231232

evaluating malware detection systems. See detection accuracy evaluation

export_graphviz function, 132

extract_features function, 204205

ExtractImages helper class, 5657

F

fakepdfmalware.exe, 7

false negatives, defined, 120, 120f

false positives, 120, 120f

base rates and precision, 124126

false positive rate, 121

relationship between true and false positive rates, 121122, 121f122f

ROC curves, 123124, 123f

fdp tool, 4345, 45f, 76

feature_extraction module, 129

feature extraction, 134138

Import Address Table features, 136

machine learning–based malware detectors, 9092, 141142

N-grams, 136137

Portable Executable header features, 135136

shared code analysis, 73, 75

string features, 135

training neural networks with Keras package, 203204

why all possible features can’t be used at once, 137138

FeatureHasher class, 140141

feature hashing. See hashing trick

feature spaces, 9398, 94f98f

feed-forward neural networks, 181, 181f, 193

fit_generator function, 204206, 208, 212, 214

fit method, 130131, 142

flags, defined, 15

format strings, 70

forward propagation, 189190

G

Gaussian activation function, 179t

generative adversarial networks (GANs), 195196

generator parameter, 206

get_database function, 8082

get_string_features function, 141142, 144

get_strings function, 82

get_training_data function, 143

get_training_paths function, 143

GETMAIL utility, 223

getstrings function, 7374

–G flag, 44

gini index, 132, 132f

gradient descent, 105, 190

Graph constructor, 41, 5253

graphical image analysis, 78

converting extracted .ico files to .png graphics, 8

creating directory to hold extracted images, 78

extracting image resources using wrestool, 8

GraphViz, 76

decision tree–based detectors, 131133, 132f

malware network analysis, 4351

adding visual attributes to nodes and edges, 4851

fdp tool, 4445, 45f

neato tool, 4748, 47f

parameters, 44

sfdp tool, 4647, 46f

similarity graphs, 76

ground_truth variable, 130

H

hashing trick (feature hashing), 138141

complete code for, 139140

FeatureHasher class, 140141

implementing, 138139

hidden layer, 181

histograms (bar charts), 168170, 168f169f

hostname_projection argument, 225

hyperplanes, 96, 97f

I

IAT. See Import Address Table

icoutils toolkit, 5

IDA Pro, 12

.idata section (imports) (in PE file format), 4

Identity activation function, 178t

Import Address Table (IAT), 4

dumping using pefile, 67

extracting features, 136

similarity analysis based on, 71, 71f

imports analysis, 67

inc arithmetic instruction, 15

information gain, 113

Input function, 200201

instruction sequence–based similarity, 68f

limitations of, 6870

overview, 6768

Intel syntax, 13

Internet Relay Chat (IRC), 2

int function, 148

inverted indexing, 82

ircbot.exe bot, 2

disassembling, 2021

dissecting, 57

dumping IAT, 67

strings analysis, 910

J

jaccard_index_threshold argument, 227228

jaccard function, 73

Jaccard index, 61, 65, 65f

building similarity graphs, 7375

dynamic API call–based similarity, 72

instruction sequence–based similarity, 68

minhash method, 7779

scaling similarity comparisons, 77

strings-based similarity, 70

jge instruction, 18

jmp instructions, 18

jointplot function, 171172

K

Kaspersky, 62

Keras package, building neural networks with, 199214

compiling model, 202203, 202f

defining architecture of model, 200202

evaluating model, 209211, 210f211f

layers, 200

saving and loading model, 209

syntaxes, 200

training model, 203209, 211214

built-in callbacks, 212

custom callbacks, 213214, 214f

data generators, 204207, 207f

feature extraction, 203204

validation data, 207209, 208f

keyloggers, 158, 168f, 172f173f, 173

KFold class, 151152

K-fold cross-validation, 151

k-nearest neighbors, 105109, 106f, 108f

identifying decision boundaries with, 9798, 97f98f

logistic regression vs., 108109

math behind, 107

pseudocode for, 107

when to use, 109

L

label attribute, 5051

layers submodule, 200201

lea instruction, 16

Leaky ReLU activation function, 179t

learned_parameters parameter, 103

linear disassembly, 12

limitation of, 12

shared code analysis, 6768

LOAD mode, 229

logistic_function function, 103104, 104f

logistic_regression function, 103

logistic regression, 102105, 103f104f, 154

gradient descent, 105

identifying decision boundaries with, 9697, 96f97f

k-nearest neighbors vs., 108109

limitation of, 102

math behind, 103104

plot of logistic function, 104f

pseudocode for, 103

when to use, 105

long short-term memory (LSTM) networks, 196

Los Alamos National Laboratory, 41

loss parameter, 201202

M

machine learning–based malware detectors, 89117, 127154

building basic detectors, 129

sample code, 133134

training, 130131

visualizing, 131133, 132f

building overview, 9093

collecting training examples, 9091

designing good features, 92

extracting features, 9092

reasons for, 8990

testing system, 90, 93

training system, 90, 9293

building real-world detectors, 141146

complete code for, 144146

feature extraction, 141142

running detector on new binaries, 144

training, 142143

dataset for, 224

decision boundaries, 9398, 95f98f

evaluating detector performance, 146

cross-validation, 150153, 151f, 153f

ROC curves, 147150, 150f

splitting data into training and test sets, 148149

feature extraction, 134138

Import Address Table features, 136

N-grams, 136137

Portable Executable header features, 135136

string features, 135

why all possible features can’t be used at once, 137138

feature spaces, 9398, 94f98f

hashing trick, 138141

complete code for, 139140

FeatureHasher class, 140141

implementing, 138139

overfitting and underfitting, 9899, 99f101f

supervised vs. unsupervised algorithms, 93

terminology and concepts, 128129

tool for, 230232, 231f

traditional algorithms vs., 90

types of algorithms, 101, 102f

decision trees, 109115, 109f110f, 113f114f

k-nearest neighbors, 9798, 97f98f, 105109, 106f, 108f

logistic regression, 9697, 96f97f, 102105, 103f104f

random forest, 115116, 116f

malware_projection argument, 52, 225227

malware detection evaluation. See detection accuracy evaluation

malware network analysis, 3558, 36f

attributes, defined, 37

bipartite networks, 3739, 38f

creating shared callback relationship network, 5154, 225226, 226f

code for, 5254

importing modules, 5152

parsing command line arguments, 52

saving networks to disk, 54

creating shared image relationship networks, 5458, 55f, 226227

extracting graphical assets, 57

parsing initial argument and file-loading code, 5557

saving networks to disk, 58

dataset for, 222223

edges, defined, 37

GraphViz, creating visualizations with, 4351

fdp tool, 4445, 45f

neato tool, 4748, 47f

parameters, 44

sfdp tool, 4647, 46f

visual attributes, 4851

NetworkX library, creating networks with, 4043

adding attributes, 42

adding nodes and edges, 41

saving networks to disk, 4243

nodes, defined, 37

projections, 38

shared code analysis and, 6061

visualization challenges, 3940

distortion problem, 3940, 40f

force-directed algorithms, 40

network layout, 3940

malware samples, 6162, 222224

malwr.com, 2633, 28f

analyzing results on, 2833

API calls, 3233, 33f

modified system objects, 3032

Screenshots panel, 30, 30f

Signatures panel, 2930, 29f

Summary panel, 3032, 31f32f

limitations of, 33

loading files on, 2728

Mandiant, 61, 76, 223

MAPIGET utility, 223

Mastercard, iii

matplotlib library, 148150, 162167, 162f

plotting ransomware and worm detection rates, 165167, 166f

plotting ransomware detection rates, 164165, 165f

plotting relationship between malware size and detection, 162163

max function, 160

mean function, 160161

memory cells, 196

metrics module, 147148

metrics parameter, 201202

min function, 81, 160

minhash approach

combined with sketching, 79

math behind, 7879, 78f

overview, 7778

minhash function, 82

ModelCheckpoint callback, 212

Model class, 201

models submodule, 201202

mov instruction, 1516

murmur module, 80, 82

mutexes, defined, 32

my_generator function, 205, 207208

MyCallback class, 213214

N

neato tool, 4748, 47f

Nemucod.FG malware family, 157, 157f

NetworkX library, 4043

creating shared relationship networks, 4142

overview, 41

saving networks to disk, 4243

neural networks, 176, 177188

automatic feature generation, 188

building

with four neurons, 186188, 186f187f, 187t

with three neurons, 184186, 185f186f, 185t

with two neurons, 182184, 182f184f, 183t184t

building with Keras package, 199214

compiling model, 202203, 202f

defining architecture of model, 200202

evaluating model, 209211, 210f211f

saving and loading model, 209

training model, 203209, 211214

dataset for, 224

neurons, 176

anatomy of, 177180, 177f, 178t180t

networks of, 180181, 181f

training, 189193

using backpropagation, 190192, 190f191f

using forward propagation, 189190

vanishing gradient problem, 192193

types of, 193197

autoencoder, 194195, 195f

convolutional, 193194, 194f

feed-forward, 193

generative adversarial, 195196

recurrent, 196

ResNet, 196197

universal approximation theorem, 181182, 182f

neurons, 176

anatomy of, 177180, 177f, 178t180t

networks of, 180181, 181f

next method, 205, 208

N-grams, 6364, 64f

dynamic API call–based similarity, 72

extracting features, 136137

instruction sequence–based similarity, 6768

nodes, 37

adding attributes, 42

adding to shared relationship networks, 41

adding visual attributes to, 4851

color, 49, 49f

shape, 4950, 50f

text labels, 5051

width, 4849

in decision trees, 110111

NUM_MINHASHES constant, 8081

O

objective function, 189

optimizer parameter, 201202

optional header (in PE file format), 34

output_dot_file argument, 227228

output_file argument, 52, 225, 227

overfit machine-learning models, 9899, 101f

overlap parameter, 44

P

packing, 21

difficulty of disassembling packed malware, 26

legitimate uses of, 22

pandas package, 158161

filtering data using conditions, 161

loading data, 158159

manipulating DataFrame, 159161

Parkour, Mila, 61

pasta malware family, 62, 67f68f, 70f72f

PE. See Portable Executable file format

PE (Portable Executable) header, 3, 135136

pecheck function, 7374

pefile module, 57

disassembly using, 20

dumping IAT, 67

installing, 5, 20

opening and parsing files, 56

pulling information from PE fields, 6

pefile PE parsing module, 5152

penwidth attribute, 4849

persistent malware similarity search systems, 7987

building

allowing users to search for and comment on samples, 8284

implementing database functionality, 8081

importing packages, 80

indexing samples into system’s database, 82

loading samples, 85

obtaining minhashes and sketches, 8182

parsing user command line arguments, 8485

commenting on samples, 86

sample output, 8687

searching for similar samples, 86

wiping database, 86

pick_best_question function, 112113

pickle module, 143144

plot function, 162163, 167

.png format, 43

pooling layer, 194

pop instruction, 1617

Portable Executable (PE) file format, 25

dissecting files using pefile, 57

entry point, 3

file structure, 25, 3f

DOS header, 3

optional header, 34

PE header, 3

section headers, 45

sections, defined, 4

Portable Executable (PE) header, 3, 135136

position independence, 5

precision, 124126

effect of base rate on, 124125

estimating in deployment environment, 125126

predict_proba method, 144, 149

PReLU activation function, 179t

program stack, defined, 14

projected_graph function, 54

projections, 38

push instruction, 1617

pyplot module, 148149, 163

R

random forest

overview, 115116, 116f

random forest–based detectors, 141146

complete code for, 144146

running detector on new binaries, 144

training, 142143

RandomForestClassifier class, 143, 152

ransomware, 3031, 31f, 155158, 156f, 158, 164168, 165f166f, 168f, 172173, 172f173f

.rdata section (in PE file format), 4

Receiver Operating Characteristic curves. See ROC curves

rectified linear unit (ReLU) activation function, 177f, 178t, 180, 182f, 183185, 201

recurrent neural networks (RNNs), 196

registry keys, 32

.reloc section (in PE file format), 5

ReLU (rectified linear unit) activation function, 177f, 178t, 180, 182f, 183185, 201

ResNets (residual networks), 196197

resource_projection argument, 52, 227

resource obfuscation, 22

ret instruction, 1718

reverse engineering, 12

anti-disassembly techniques, 22

dynamic analysis for, 26

methods for, 12

shared code analysis, 60

using pefile and capstone, 2021

RNNs (recurrent neural networks), 196

ROC (Receiver Operating Characteristic) curves, 123124, 123f, 126, 147150, 230231, 231f

computing, 147150

cross-validation, 151152, 153f

neural networks, 209210, 210f211f

visualizing, 149, 150f

roc_curve function, 149, 210

.rsrc section (resources) (in PE file format), 45

S

sandbox, 26

Sanders, Hillary, 216

savefig function, 165

scan_file function, 144

scan mode, 230231

scikit-learn (sklearn) machine learning package, 127128

building basic decision tree–based detectors, 129134

building random forest–based detectors, 141146

evaluating detector performance, 146153

feature extraction, 134135

hashing trick, 140141

terminology and concepts, 128129

classifiers, 129

fit, 129

label vectors, 128129

prediction, 129

vectors, 128

seaborn package, 168174, 168f

creating violin plots, 172174, 172f173f

plotting distribution of antivirus detections, 169172, 169f, 171f

search_sample function, 8284

SEARCH mode, 229

section headers (in PE file format), 45

.data section, 4

.idata section (imports), 4

.rdata section, 4

.reloc section, 5

.rsrc section (resources), 45

.text section, 4

security data scientists, 215220

expanding knowledge of methods, 219220

paths to becoming, 216

traits of effective, 218219

curiosity, 218219

obsession with results, 219

open-mindedness, 218

skepticism of results, 219

willingness to learn, 216

workflow of, 216218, 217f

data feed identification, 218

dealing with stakeholders, 217

deployment, 218

problem identification, 217218

solution building and evaluation, 218

self-modifying code, 12

set_axis_labels function, 172

sfdp tool, 4647, 46f

shape attribute, 4950

shared attribute analysis. See malware network analysis

shared code analysis (similarity analysis), 5987, 60, 61f

bag of features model, 6264, 63f

features, defined, 62

N-grams, 6364, 64f

order information and, 6364

overview, 6263

dataset for, 223

Jaccard index, 6465, 65f

persistent malware similarity search systems, 7987

allowing users to search for and comment on samples, 8284

commenting on samples, 86

implementing database functionality, 8081

importing packages, 80

indexing samples into system database, 82

loading samples, 85

obtaining minhashes and sketches, 8182

parsing user command line arguments, 8485

sample output, 8687

searching for similar samples, 86

wiping database, 86

scaling similarity comparisons, 7779

difficulties with, 77

minhash method, 7779, 78f

similarity graphs, 7376, 76f

declaring utility functions, 7374

extracting features, 73, 75

importing libraries, 73

iterating through pairs, 75

Jaccard index threshold, 73

parsing user’s command line arguments, 74

visualizing graphs, 76

similarity matrices, 6672, 66f67f

concept of, 66

dynamic API call–based similarity, 72, 72f

Import Address Table–based similarity, 71, 71f

instruction sequence–based similarity, 6770, 68f

strings-based similarity, 7071, 70f

tools for, 227230, 228f

shared image relationship networks, 5458, 55f, 226227

extracting graphical assets, 57

parsing initial argument and file-loading code, 5557

saving networks to disk, 58

shelve module, 80

show function, 152, 163, 165, 168

Sigmoid activation function, 180t, 201

sim_graph module, 80, 82

similarity analysis. See shared code analysis

similarity functions, 6465

similarity graphs, 7376, 76f

declaring utility functions, 7374

extracting features, 73, 75

importing libraries, 73

iterating through pairs, 75

Jaccard index threshold, 73

parsing user’s command line arguments, 74

visualizing graphs, 76

similarity matrices, 6672, 66f67f

dynamic API call–based similarity, 72, 72f

Import Address Table–based similarity, 71, 71f

instruction sequence–based similarity, 6770, 68f

strings-based similarity, 7071, 70f

SKETCH_RATIO constant, 80, 82

sklearn. See scikit-learn machine learning package

skor malware family, 62, 67f68f, 70f72f

Softmax activation function, 180t

Sophos, 216

splines parameter, 44

split_regex expression, 203204

stack, defined, 16

stack instructions, 1617

stack management registers, 1415

static malware analysis, 123

dataset for, 222

disassembly and reverse engineering, 12

methods for, 12

using pefile and capstone, 2021

graphical image analysis, 78

imports analysis, 67

limitations of, 2123

anti-disassembly techniques, 22

dynamically downloaded data, 2223

packing, 2122

resource obfuscation, 22

pefile module, 57

Portable Executable file format, 25

strings analysis, 810

std function, 160

Step activation function, 179t

steps_per_epoch parameter, 206

string_hash function, 8182

strings

defined, 8

feature extraction, 135, 141142

strings analysis, 810

analyzing printable strings, 810

information revealed through, 8

printing all strings in a file to terminal, 89

strings-based similarity, 7071, 70f

strings tool, 810

sub arithmetic instruction, 15

summary function, 202203, 202f

supernodes, 46

suspicious_calls parameter, 103104

suspiciousness scores, 121122, 121f122f

T

Target, iii

target_directory argument, 227228

target_path argument, 52, 225, 227

TensorFlow, 200, 207

.text section (in PE file format), 4

threat scores, 147

.todense method, 142

train_detector function, 143

training_examples variable, 130

transform method, 131, 140

tree module, 129

Trojans, 5455, 55f, 158161, 168f, 172f173f, 173

true negatives, defined, 120, 120f

true positives, 120, 120f

base rates and precision, 124126

relationship between true and false positive rates, 121122, 121f122f

ROC curves, 123124, 123f

true positive rate, 121

U

underfit machine-learning models, 9899, 99f

universal approximation theorem, 181182, 182f

UPX packer, 29

V

validation_labels object, 210211

validation_scores object, 210

vanishing gradient problem, 192193

vbna malware family, 62, 67f68f, 70f72f

vectors, 128

violin plots, 172174, 172f173f

VirtualBox, viiviii, 222

virtual size, 6

VirusTotal.com, 29, 59

visualization, 155174

basic machine learning–based malware detectors, 131133, 132f

dataset for, 224

importance of, 156158, 157f

malware network analysis

challenges to, 40f

creating with GraphViz, 45f47f

network analysis

challenges to, 3940

creating with GraphViz, 4351

ROC curves, 149, 150f, 152153, 153f

shared code analysis, 76

using matplotlib, 162167, 162f

plotting ransomware and worm detection rates, 165167, 166f

plotting ransomware detection rates, 164165, 165f

plotting relationship between malware size and detection, 162163

using pandas, 158161

filtering data using conditions, 161

loading data, 158159

manipulating DataFrame, 159161

using seaborn, 168174, 168f

creating violin plots, 172174, 172f173f

plotting distribution of antivirus detections, 169172, 169f, 171f

W

webprefix malware family, 62, 67f68f, 70f72f

weight attribute, 37

weight parameter, 178, 181

Wells Fargo, iii

Wikipedia, 220

wipe_database function, 8081

wipe mode, 229

work method, 57

worms, 158161, 165167, 166f, 168f, 172, 172f173f

wrestool tool, 55

downloading, 8

extracting image resources, 78

write_dot function, 4243

X

x86 assembly language, 1220

arithmetic instructions, 15, 15t

CPU registers, 1315, 14f

general-purpose registers, 1314

stack and control flow registers, 1415

data movement instructions, 1520, 16t

basic blocks and control flow graphs, 1920, 19f

control flow instructions, 1718

stack instructions, 1617

dialects of, 13

shared code analysis, 67

xtoober malware family, 62, 67f68f, 70f72f

Y

yield statement, 205

Z

zango malware family, 62, 67f68f, 70f72f