[1]J.-P. AUBIN (1981): Fuzzy cooperative games. Math. Operations Research 6, 1–13.
[2]J. BANZHAF: Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review 19, 317–343.
[3]E. BERNE (1964): Games People Play: The Psychology of Human Relationships, Grove Press.
[4]J. BERNOULLI (1713), Ars Conjectandi, Basel
[5]O. BONDAREYA (1963): Some applications of linear programming to the theory of cooperative games. Problemy Kibernetiki 10, 119–139.
[6]D. BRAESS (1968): Über ein Paradoxon aus der Verkehrsplanung. [Unternehmens]forschung 12, 258–268.
[7]J.H. CONWAY (2000): On Numbers and Games. A.K. Peters.
[8]G. CHOQUET (1953): Theory of capacities. Annales de l’Institut Fourier 5, 131–295.
[9]A.A. COURNOT (1838): Recherche sur les principes mathématiques de la théorie de la richesse. Paris
[10]R. FAGIN, J.Y. HALPERN, Y. MOSES and M.Y. VARDI (1995): Reasoning about Knowledge, The MIT Press.
[11]U. FAIGLE and G. GIERZ (2017): Markovian statistics on evolving systems. Evolving Systems, DOI 10.1007/s12530-017-9186-8
[12]U. FAIGLE and M GRABISCH (2017): Game theoretic interaction and decision. A quantum analysis. Games 8 (https://doi.org/10.3390/g8040048).
[13]U. FAIGLE and M GRABISCH (2020): Least square approximations and linear values of cooperative games. In: Algebraic Techniques and their Use in Describing and Processing Uncertainty. (H.T. NGUYEN and V. KREINOVICH eds.), Studies in Computational Intelligence 878, Springer, 21–32.
[14]U. FAIGLE and W. KERN (1991): Note on the convergence of simulated annealing algorithms. SIAM J. Control Optim. 29, 15-3-159.
[15]U. FAIGLE and W. KERN (2000): On the core of submodular cost games. Math. Programming A87, 483–499.
[16]U. FAIGLE, W. KERN and D. PAULUSMA (2000): Note on the computational complexity for min-cost spanning tree games. Math. Methods of Operations Research 52, 23–38.
[17]U. FAIGLE, W. KERN and G. STILL (2002): Algorithmic Principles of Mathematical Programming, Springer.
[18]U. FAIGLE, W. KERN, S.P. FÉKETE and W. HOCHSTÄTTLER (1998): The nucleon of cooperative games and an algorithm for matching games. Math. Programming 38, 195–211.
[19]S. FUJISHIGE (2005): Submodular Functions and Optimization.2nd ed., Annals of Discrete Mathematics 58.
[20]M. GRABISCH (2016): Set Functions, Games and Capacities in Decision Making. Springer.
[21]A. GRANAS and J. DUGUNDJI (2003): Fixed Point Theory. Springer.
[22]P.R. HALMOS (1951): Introduction to Hilbert space and theory of spectral multipicity. Chelsea, New York.
[23]J.L KELLY (1956): A new interpretation of information rate. The Bell System Technical Journal (https://doi.org/10.1002/j.1538-7305.1956.tb03809.x)
[24]J.G. KEMENY and J.L. SNELL (1960): Finite Discrete Markov Chains, van Nostrand.
[25]S. KIRKPATRICK, C.D. GELAT and M.P. VECCHI (1983): Optimization by simulated annealing. Science 220, 671–680.
[26]L. LOVÁSZ (1983): Submodular functions and convexity. In: Mathematical Programming — The State of the Art (A. BACHEM, M. GRÖTSCHEL and B. KORTE eds.), Springer, 235–257.
[27]M. MASCHLER, B. PELEG and L.S. SHAPLEY (1979): Geometric properties of the kernel, nucleolus, and related solution concepts. Math. of Operations Research 4, 303–338.
[28]N. METROPOLIS, A. ROSENBLUTH, M. ROSENBLUTH, A. TELLER and E. TELLER (1953): Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1092.
[29]J. NASH (1950): Equilibrium points in n-person games. Proc. National Academy of Sciences 36, 48–49.
[30]E.D NERING (1967): Linear Algebra and Matrix Theory. Wiley, New York.
[31]J. VON NEUMANN (1928): Zur Theorie der Gesellschaftsspiele.Math. Annalen 100.
[32]J. VON NEUMANN (2018): Mathematical Foundations of Quantum Mechanics. (New Edition by N.A. WHEELER). Translated by R.T. Beyer. Princeton University Press.
[33]J. VON NEUMANN and O. MORGENSTERN (1944): Theory of Games and Economic Behavior. Princeton University Press, 157 doi:10.1038/157172a0.
[34]N. NISAN, T. ROUGHGARDEN and É. TARDOS (2007): Algorithmic Game Theory. Cambridge University Press.
[35]R.W. ROSENTHAL (1973): The network equilibrium problem in integers. Networks 3, 53–59.
[36]G.-C. ROTA (1964): On the foundations of combinatorial theory I. Theory of MÖBIUS functions. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 340–368.
[37]L.M ROTANDO and E.O. THORP (1992): The Kelly criterion and the stock market. The American Monthly 99, 922–931.
[38]W. RUDIN (1953): Principles of Mathematical Analysis. McGraw Hill.
[39]D. SCHMEIDLER (1969): The nucleolus of a characteristic function game. SIAM J. of Appliedd Mathematics 17, 1163–1170.
[40]R. SELTEN (1978): The chain store paradox. Theory and Decision 9, 127–159.
[41]C.E. SHANNON (1948): A mathematical theory of communication Bell System Tech. J. 27, 379–423, 623–656.
[42]L.S. SHAPLEY (1953): A value for n-person games. In: Contributions to the Theory of Games (H.W. KUHN and A.W. TUCKER eds.), Princeton University Press, 307–311.
[43]L.S. SHAPLEY (1971): Cores of convex games. Int. J. of Game Theory 1, 11–26.
[44]J.G. WARDROP (1952): Some theoretical aspects of road traffic research. Institution of Civil Engineers 1, 325–378.
[45]J. WEIDMANN (1980): Linear Operators in Hilbert Spaces. Graduate Texts in Mathematics. Springer.