Sourced illustrations

The following illustrations are reproduced by permission:

Shutterstock: figures 2.1, 4.2, 4.8, 4.11, 4.14, 5.1, 5.6, 5.7, 5.9, 5.11, 6.3, 6.4, 6.8, 6.11, 6.13, 7.1, 8.1, 9.1, 9.4, 10.1, 10.8, 10.10, 11.1, 11.3, 11.5, 11.9, 11.10, 12.2, 12.5, 12.6, 12.9, 13.1, 13.7.

Science Photo Library: 7.4, 13.17.

Figure 2.2: Umbgrove, J.H.F. 1950. Symphony of the Earth, Martinus Nijhoff, The Hague.

The following illustrations have been adapted from published sources:

Figure 2.3: Du Toit, A.L. (1957) Our Wandering Continents. An Hypothesis of Continental Drifting. London: Oliver & Boyd.

Figure 2.4: Wegener, A. (1922) Die Enstehung der Kontinente und Ozeane. Braunschweig: Friedrich Vieweg & Sohn.

Figure 2.5: Du Toit, A.L. (1957) Our Wandering Continents. An Hypothesis of Continental Drifting. London: Oliver & Boyd.

Figure 2.6: Holmes, A. (1929) Radioactivity and earth movements. Transactions of the Geological Society of Glasgow, 18, 559–606.

Figure 2.7: McElhinny, N.W. (1973) Palaeomagnetism and plate tectonics. Cambridge: Cambridge University Press.

Figure 2.8: Wyllie, P.J. (1976) The way the Earth works. New York: Wiley.

Figure 2.11: Larson, R.L. and Pitman, W.C. (1972) Bulletin of the Geological Society of America, 83, 3645–3661.

Figure 3.1: Chadwick, P. (1962) Mountain-building hypotheses. In: S.K. Runcorn (ed.) Continental drift. New York: Academic Press.

Figure 3.3: Larson, R.L. and Pitman, W.C. (1972) Bulletin of the Geological Society of America, 83, 3645–3661.

Figure 3.4: Uyeda, S. (1978) The new view of the Earth, San Francisco: Freeman.

Figure 3.5: Isacks, B., Oliver, J. and Sykes, L.R. (1968) Seismology and the new global tectonics. Journal of Geophysical Research, 73, 18, 5855–5899.

Figure 3.6: Dewey, J. (1972) Plate tectonics. In: Continents adrift and continents aground: readings from Scientific American. San Francisco: Freeman.

Figure 3.7: Vine, F.J. and Hess, H.H. (1970) In: A.E. Maxwell (ed.) The Sea, v.4, New York: Wiley.

Figure 3.8C: Reston, T.J. (2007) The formation of non-volcanic rifted margins by the progressive extension of the lithosphere: the example of the West Iberian margin. From: G.D. Karner, G. Manatscheal and L.M. Pinheiro (eds) Imaging, mapping and modelling continental lithosphere extension and breakup. Geological Society, London, Special Publications, 282, 77–110.

Figure 3.9: weebly.com/somali plate, via Wikimedia Commons.

Figure 3.10, 3.11: Dewey, J.F. and Bird, J. (1970) Mountain belts and the new global tectonics. Journal of Geophysical Research, 75, 2625–2647.

Figure 3.13. Searle, M.P., Elliott, J.R. et al. (2011) Crustal-lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society, London, 168, 633–672.

Figure 4.3: Sans de Galdeano, C. (2000) Evolution of Iberia during the Cenozoic with special emphasis on the formation of the Betic Cordillera and its relation with the western Mediterranean. Ciências da Terra (UNL), Lisboa 14, 9–24.

Figure 4.4: Ziegler, P. (1990) Geological atlas of Western and Central Europe. Shell Internationale Petroleum Maatschapij BV, 239pp.

Figure 4.5, 4.6: Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, E. and Bernoulli, D. (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth Science Reviews, 102, 121–158.

Figure 4.7, 4.9: (1) Puigdefàbregas, C., Muñoz, J.A. and Vergės, J. (1992) Thrusting and foreland basin evolution in the Southern Pyrenees. In: K. McClay (ed.) Thrust tectonics. London: Chapman & Hall, 247–254. (2) Vergés, J. (1993) Estudi geològic del vessant Sud del Pirineu Oriental i Central: Evolució en 3D. Ph.D. thesis, University of Barcelona.

Figure 4.10: (1) Alonso-Chaves, F.M., Soto, J.I., Orozco, M., Kilias, A.A. and Tranos, M.D. (2004) Tectonic evolution of the Betic Cordillera: an overview. Bulletin of the Geological Society of Greece, 36, 1598–1607. (2) Castro, J.M., Garcia, A., Gómez, J.J., Goy, A., Molina, J.M., Ruiz Ortiz, P.A. and Sopeña, A. (2009) Mesozoic successions of the Betic and Iberian ranges. In: A. Garcia-Cortés, J.A. Villar, J.P. Suarez-Valgrande and C.I.S. Gonzálaez, Spanish geological frameworks and geosites, Instituto Geológico y Minerò de España, Madrid, 73–90.

Figure 4.12: (A): (1) Azañón, J.M., Galindo-Zalvidar, J., Garcia-Dueñas, V. and Jabaloy, A. (2002) Alpine tectonics II: Betic Cordillera and Balearic Islands. In: W. Gibbons and M.T. Moreno, The geology of Spain. The Geological Society, London. (2) Morales, J., Serrano, I., Jabaloy, A. et. al. (1999) Active continental subduction beneath the Betic Cordillera and the Alboran Sea. Geology, 27, 735–538. (B) Banks, C.J. and Warburton, J. (1991) Mid-crustal detachment in the Betic system of Southeast Spain. Tectonophysics, 191, 275–289.

Figure 5.2: Argand, E. (1916) Sur l’arc des Alpes occidentales. Eclogae Geologicae Helvetiae, 14, 145–191.

Figure 5.3: Zeck, H.P. (1999) Alpine plate kinematics in the western Mediterranean: a westwards-directed subduction regime followed by slab roll-back and slab detachment. In: B. Durand, L. Jolivet, F. Horvath and M. Séranne (eds) The Mediterranean basins: Tertiary extension within the Alpine Orogen. Geological Society of London, Special Publications, 156, 109–120.

Figure 5.4: (A, C): Schmid, S.M., Fügenschuh, B., Kissling, E. and Schuster, R. (2004) Tectonic map and overall architecture of the Alpine orogeny. Eclogae geologicae Helvetica, 97, 93–117; (B): Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, E. and Bernoulli, D. (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth Science Reviews, 102, 121–158.

Figure 5.5: (A) Pfiffner, A. (2014) Geology of the Alps, Chichester: Wiley Blackwell. (B) Dietrich, D. and Song, H. (1984) Calcite fabrics in a natural shear environment, the Helvetic nappes of Switzerland. Journal of Structural Geology, 6, 19–32.

Figure 5.8: Pfiffner, A. (2014) Geology of the Alps, Chichester: Wiley Blackwell.

Figure 5.10: Patacca, E. and Scandone, P. (2007) Geology of the Southern Apennines. Bollettino del Societa Geologia Italiana, Special Issue 7, 75–119.

Figure 5.12: Carminati, E. and Doglioni, C. (2012) Alps vs. Apennines: the paradigm of a tectonically asymmetric Earth. Earth-Science Reviews, 112, 67–96.

Figures 6.1: Okay, A.I. (2000) Geology of Turkey: a synopsis, Anschnitt, 21, 19–42.

Figure 6.2: Márton, E., Tischler, M., Csontos, L., Fügenschuh, B. and Schmid, S.M. (2007) The contact zone between the ALCAPA and Tisza–Dacia mega-tectonic units of Northern Romania in the light of new palaeomagnetic data. Swiss Journal of Geosciences, 100, 1–16.

Figure 6.5, 6.6: Tari, V. (2002) Evolution of the northern and western Dinarides: a tectonostratigraphic approach. EGU Stephan Mueller Special Publication Series 1, 223–236.

Figure 6.7: Degnan, P.J. and Robertson, A.H.F. (2006) Synthesis of the tectonic–sedimentary evolution of the Mesozoic–Early Cenozoic Pindos Ocean: evidence from the NW Peloponnese, Greece. In: A.H.F. Robertson and D. Mountrakis (eds) (2006) Tectonic development of the Eastern Mediterranean Region. Geological Society, London, Special Publications, 260, 467–491.

Figure 6.9: Robertson, A.F., Parlak, O, and Ustaömer, T. (2009) Mélange genesis and ophiolite emplacement related to subduction of the northern margin of the Tauride–Anatolide continent, central and western Turkey. In: D.J.J. Van Hinsbergen, M. A. Edwards and R. Govers (eds) Collision and collapse at the Africa–Arabia–Eurasia subduction zone. The Geological Society, London, Special Publications, 311, 9–66.

Figure 6.10: (A) Okay, A.I. (2000) Geology of Turkey: a synopsis, Anschnitt, 21, 19–42. (B) Dilek, Y. and Altunkaynak, S. (2009) Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab break-off, and lithosphere tearing in an orogenic belt. In: D.J. Van Hinsbergen, M.A. Edwards and R. Glover (eds) Collision and collapse at the Africa–Arabia–Eurasia subduction zone. Geological Society, London, Special Publications, 311, 213–233.

Figure 6.12: Okay, A.I. (2000) Geology of Turkey: a synopsis, Anschnitt, 21, 19–42.

Figure 6.15: Adamia, S., Zakariadze, G., Chkhotua, T., Sadradze, N., Tsereteli, N., Chabukiani, A. and Gventsadze, A. (2011) Geology of the Caucasus: a review. Turkish Journal of Earth Sciences, 20, 489–544.

Figure 7.2: Paul, A., Hatzfeld, D., Kaviani, A. and Péquegnat, C. (2010) Seismic imaging of the lithospheric structure of the Zagros mountain belt, (Iran). In: P. Leturmy and C. Robin (eds) Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic–Cenozoic. Geological Society, London, Special Publications, 330, 5–18.

Figure 7.3: Regard, V., Hatzfield, D., Molinaro, M., Aubourg, C., Bayer, R., Bellier, O., Yamini-Fard, F., Peyret, M. and Abassi, M. (2010) The transition between Makran subduction and the Zagros collision: recent advances in its structure and active deformation. In: P. Leturmy and C. Robin (eds) Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic–Cenozoic. Geological Society, London, Special Publications, 330, 43–64.

Figure 7.5, 7.6: McCall, G.J.H. and Kidd, R.G.W. (1982) The Makran, Southeastern Iran: the anatomy of a convergent plate margin active from Cretaceous to Present. In: Trench–forearc geology: sedimentation and tectonics on modern and ancient active plate margins. Geological Society, London, Special Publications, 10, 387–397.

Figure 7.7: Platt, J.P., Leggett, J.K., Young, J., Raza, H. and Alam, S. (1985) Large-scale sediment underplating in the Makran accretionary prism, southwest Pakistan. Geology, 13, 507–511.

Figure 7.8: Mahmood, S.A. and Gloaguen, R. (2012) Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geoscience Frontiers, 3 (4), 407–428.

Figure 8.2: (1) Molnar, P. and Tapponnier, P. (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science, 189 (4201), 419–426. (2) Searle, M.P., Law, R.D. and Jessup, M.J. (2006) Crustal structure, restoration and evolution of the Greater Himalaya in Nepal–South Tibet: implications for channel flow and ductile extrusion of the middle crust. In: R.D. Law, M.P. Searle and L. Godin (eds) Channel flow, ductile extrusion and exhumation in continental collision zones. Geological Society, London, Special Publications, 268, 355–378.

Figure 8.3: NASA image.

Figure 8.4: Molnar, P. and Tapponnier, P. (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science, 189 (4201), 419–426.

Figure 8.5: Harrison, T.M. (2006) Did the Himalayan crystallines extrude partially molten from beneath the Tibetan Plateau? In: R.D. Law, M.P. Searle and L. Godin (eds) Channel flow, ductile extrusion and exhumation in continental collision zones. Geological Society, London, Special Publications, 268, 237–254.

Figure 8.6: Butler, R.W.H. and Prior, D.J. (1988) Tectonic controls on the uplift of the Nanga Parbat Massif, Pakistan Himalayas. Nature, 333, 247–250.

Figure 8.8, 8.9: Searle, M.P., Elliott, J.R., Phillips, R.J. et al. (2011) Crustal–lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society, London, 168, 633–672.

Figure 8.10: Oil and Natural Gas Corporation, India, via Wikimedia Commons.

Figure 9.2: Metcalfe, I. (2011) Palaeozoic–Mesozoic history of SE Asia. In: R. Hall, M.A. Cottam and M.E.J. Wilson (eds) The SE Asian gateway: history and tectonics of the Australia–Asia collision. Geological Society, London, Special Publications, 355, 7–35.

Figure 9.3: Hall, R. (2011) Australian–SE Asia collision: plate tectonics and crustal flow. In: R. Hall, M.A. Cottam and M.E.J. Wilson (eds) The SE Asian gateway: history and tectonics of the Australia–Asia collision. Geological Society, London, Special Publications, 355, 75–109.

Figure 9.5: Kopp, H. (2011) The Javas convergent margin. In: R. Hall, M.A. Cottam and M.E.J. Wilson, M.E.J. (eds) The SE Asian gateway: history and tectonics of the Australia–Asia collision. Geological Society, London, Special Publications, 355, 111–137.

Figure 9.6: Granath, J.W., Christ, J.M., Emmet, P.A. and Dinkelman, M.G. (2011) Pre-Cenozoic sedimentary section and structure as reflected in the JavaSPANTM crustal-scale PSDM seismic survey, and its implications regarding the basement terranes in the East Java Sea. In: R. Hall, M.A. Cottam and M.E.J. Wilson (eds) The SE Asian gateway: history and tectonics of the Australia–Asia collision. Geological Society, London, Special Publications, 355, 53–74.

Figure 9.7: Hall, R. (2011) Australian–SE Asia collision: plate tectonics and crustal flow. In: R. Hall, M.A. Cottam and M.E.J. Wilson (eds) The SE Asian gateway: history and tectonics of the Australia–Asia collision. Geological Society, London, Special Publications, 355, 75–109.

Figures 9.8, 9.9: Darman, H. (2014) The Geology of Indonesia/Banda Arc. Wikibooks.

Figures 9.10, 9.11: Rangin, C. and Silver, E.A., et al. (1991) Neogene tectonics and evolution of the Celebes and Sulu basins: new insights from Leg 124 drilling. Proceedings of the Ocean Drilling Program, Scientific Results, 124, 51–62.

Figure 10.2: Leat, P.T. and Larter, R.D. (2003) Intra-oceanic subduction systems: introduction. In: R.D. Larter and P.T. Leat (eds) Intra-oceanic subduction systems: tectonic and magmatic processes. Geological Society, London, Special Publications 219, 1–17.

Figures 10.3, 10.4: Coates, G. (2002) The rise and fall of the Southern Alps. Christchurch, New Zealand: Canterbury University Press.

Figure 10.5: Segev, A., Ryabakov, M. and Mortimer, N. (2012) A crustal model for Zealandia and Fiji. Geophysical Journal International, 189, 1277–1292.

Figure 10.6: Alataristarion (2006) via Wikimedia Commons.

Figure 10.7: Morrison, Sean (2014) Geologic evolution of the Philippines. https//geomorrison.files.wordpress.com.

Figure 10.9: Lallemand, S., Dominguez, S., Deschamps, A. and Liu, C-S. (2002) Arc–continent collision in Taiwan: new marine observations and tectonic evolution. Geological Society of America, Special Paper 358, 189–213; Central Geological Survey of Taiwan, MOEA.

Figure 10.11: Taira, A., Ohara, S.R., Wallis, A., Ishiwatari, A. and Iryu, Y. (2016) Geological evolution of Japan: an overview. In: T. Moreno, S. Wallis, T. Kojima and W. Gibbons The geology of Japan. Geological Society, London.

Figure 10.12: Kojima, S. and 9 co-authors. (2016) Pre-Cretaceous accretionary complexes. In: T. Moreno, S. Wallis, T. Kojima and W. Gibbons The geology of Japan. Geological Society, London.

Figures 11.2: Moores, E.M. and Twiss, R.J. (1995) Tectonics. New York: Freeman.

Figure 11.4: Anon. (2011) Geological Surveys of the Yukon and British Columbia.

Figure 11.7: (1) Coney, P.J., Jones, D.L., and Monger, J.W.H. (1980) Cordilleran suspect terranes: Nature, 288, 329–333. (2) Fitz-Diaz, E., Hudleston, P. and Tolson, G. (2011) Comparison of tectonic styles in the Mexican and Canadian Rocky Mountain Fold-thrust Belt. In: J. Poblet and R.J. Lisle (eds) Kinematic evolution and structural styles of fold-thrust belts. Geological Society, London, Special Publications, 349, 149–167.

Figure 11.8: Moores, E.M. and Twiss, R.J. (1995) Tectonics. New York: Freeman.

Figures 12.1, 12.3: James, K.H. (2013) Caribbean geology: extended and subsided continental crust sharing history with eastern North America, the Gulf of Mexico, the Yucatán Basin and northern South America. Geoscience Canada, 40, 1.

Figure 12.4: Westbrook, G.K. (1982) The Barbados ridge complex: tectonics of a mature fore-arc system. In: J.K. Leggett (ed.) Trench-forearc geology: sedimentation and tectonics on modern and ancient active plate margins. Geological Society, London, Special Publications, 10, 357–372.

Figures 12.7, 12.8: (1) Moreno, T, and Gibbons, W. (2007) The Geology of Chile. The Geological Society, London. (2) Moores, E.M. and Twiss, R.J. (1995) Tectonics. New York: Freeman. Section 12.3: The Andes.

Figure 12.10: joannenova.com.au., via Wikimedia Commons.

Figure 12.11: Bulkeley, R. (2008) Aspects of the Soviet IGY. Russian Journal of Earth Sciences, 10, ES1003.

Figure 13.3, 13.4: Searle, R. (2015) Mid-ocean Ridges. Cambridge: Cambridge University Press.

Figure 13.5: Uyeda, S. (1978) The new view of the Earth. San Francisco: Freeman.

Figures 13.6: topographic ocean-floor map by National Oceanographic and Atmospheric Administration (USA).

Figure 13.8: (1) Saemundsson, K. (1974) Evolution of the axial rifting zone in northern Iceland. Bulletin of the Geological Society of America 85, 495–504. (2) Foulger, G.R. and Anderson, D.L. (2005) A cool model for the Iceland hotspot. Journal of Volcanology and Geothermal research 141, 1–22.

Figure 13.11: Topographic ocean-floor map by National Oceanographic and Atmospheric Administration (USA).

Figure 13.12: Murton, B.J. and Rona, P.A. (2015) Carlsberg Ridge and Mid-Atlantic Ridge: comparison of slow-spreading centre analogues. Deep Sea Research II, Topical studies in Oceanography, 32, 71–84.

Figure 13.13: Topographic ocean-floor map by National Oceanographic and Atmospheric Administration (USA).

Figure 13.14: Searle, R. (2015) Mid-ocean Ridges. Cambridge: Cambridge University Press.

Figure 13.15, 16: Topographic ocean-floor maps by National Oceanographic and Atmospheric Administration (USA).

Figure 13.18: Wilson, J.T. (1963) A possible origin of the Hawaiian Islands. Canadian Journal of Physics. 41(6), 863–870.

Figures 14.1, 14.2: Cocks, L.R.M. and Torsvik, T.H. (2006) European geography in a global context from the Vendian to the end of the Palaeozoic. In: D.G. Gee and R. Stephenson (eds) European lithosphere dynamics. Geological Society of London, Memoirs, 32, 83–95.

Figure 14.3: (A) Dalziell, I.W.D. (1997) Neoproterozoic–Palaeozoic geography and tectonics: review, hypothesis, environmental speculation. Geological Society of America Bulletin, 109, 16–42. (B) Cocks, L.R.M. and Torsvik, T.H. (2006) European geography in a global context from the Vendian to the end of the Palaeozoic. In: D.G. Gee and R. Stephenson (eds) European lithosphere dynamics. Geological Society of London, Memoirs, 32, 83–95.

Figure 14.4: Gee, D., Juhlin, C., Pascal, C. and Robinson, P. (2010) Collisional orogeny in the Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 132, 29–44.

Figure 14.5: Roberts, D. (2003) The Scandinavian Caledonides: event chronology, palaeogeographic settings and likely modern analogues. Tectonophysics, 365, 283–299.

Figure 14.6: (1) Leslie, G., Smith, M. and Soper, N.J. (2008) Laurentian margin evolution and the Caledonian Orogeny: a template for Scotland and East Greenland. In: A.K. Higgins, J.A. Gilotti and M. P. Smith (eds) The Greenland Caledonides: evolution of the northwest margin of Laurentia. Geological Society of America, Memoir 202, 307–343. (2) Dewey, J.F. and Shackleton, R.M. (1984) A model for the evolution of the Grampian tract in the early Caledonides and Appalachians. Nature, London, 312, 115–121.

Figure 14.8: (A) Elliott, D. and Johnston, M.R.W. (1980) Structural evolution in the northern part of the Moine thrust zone. Transactions of the Royal Society of Edinburgh: Earth Sciences, 71, 69–96. (B) Treagus, J.E. (2000) Solid geology of the Schiehallion district. Memoir of the British Geological Survey, HMSO.

Figure 14.9: (1, Africa): Michard, A., De Lamotte, D.F., Saddiqi, O. and Chalouan, A. (2008) An outline of the Geology of Morocco. In: A. Michard et al. Continental Evolution: the Geology of Morocco. Lecture Notes in Earth Sciences, 116, Springer-Verlag, Berlin; Heidelberg. (2, N. America): US Geological Survey: Appalachian zones in the United States, via Wikimedia Commons.

Figure 14.10: Hickman, R.G., Vargo, R.J. and Altany, R.M. (2009) Structural style of the Marathon thrust belt, West Texas. Journal of Structural Geology, 31, 900–909.

Figure 14.11: (1) Ballèvre, M., Bosse, V., Ducassou, C. and Pitra, P. (2009) Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. Comptes Rendus Geoscience, 341, 174–201. (2) Martinez-Catalan, J.R., Aller, J., Alonso, J.L. and Bastida, F. (2009) The Iberian Variscan orogen. In: A. Garcia-Cortés, J.A. Villar, J.P. Suarez-Valgrande and C.I.S. Gonzálaez. Spanish geological frameworks and geosites, Instituto Geológico y Minerò de España, Madrid, 13–30.

Figure 14.12: Windley, B.F., Alexeiev, D., Xiao, W., Kröner, A. and Badarch, G. (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, London, 164, 31–47.

Figure 14.13: (A) Juhlin C., Friberg M., Echtler H., Hismatulin T., Rybalka A., Green A.G. and Ansorge J. (1998) Crustal structure of the Middle Urals: results from the ESRU experiments, Tectonics, 17(5), 710–725. (B) Berzin, R., Oncken, O., Knapp, J.H., Pėrez-Estaún, A., Hismatulin, T., Yunusov, N. and Lipilin, A. (1996) Orogenic evolution of the Ural Mountains: results from an integrated seismic experiment. Science, 274, 220–222.

All other illustrations are by the author.