Index

The suffix ‘n’ indicates a note. Italic page references refer to Figures.

A

abstract algebra 101, 103, 276, 279–80

acceleration, defined 39–40

aerodynamics 86, 168, 170, 172

air travel 167

aircraft design 172

(Taqi) al-Din Muhammad ibn Ma’ruf al-Shami al-Asadi 199

al-Katibi, Najm al-Din al-Qazwini 57

Alexander, James Waddell 101, 103–4

algebra

abstract 101, 103, 276, 279–80

Cardano and 75, 77–8

notation of 78

relation to geometry 9

algorithms 157–60, 264, 320

Alhazen 57

‘alternate worlds’ 258

American Psychological Association 125

analogue computers 172, 270

analysis 51, 82 see also calculus

analysis of variance method 125

angular momentum 49

animal population dynamics 286–7, 291–2, 330n

Apollo missions 65–6, 168

Arago, François 233

arbitrage pricing theory 304, 306

Archimedes 3, 57, 169

Argand, Jean-Robert 81–2, 87

Aristarchus of Samos 56

Aristotle 46–7

arithmetic, rules of 77

Arnold, Vladimir 289–90

Arp, Halton 241

arrow of time 208, 211, 213, 318

Aryabhata 56

astronomy

chaotic dynamics in 290–1

geocentric universe 8

interpretations of the night sky 55–6

lasers in 263

tests of relativity 233–5

use of logarithms 29

atomic bomb 229

atomic theory. see molecules

‘average man’ 116

B

Babylonian mathematics 6–7, 80

Bachelier, Louis 302–4

banking system

acceptance of derivatives 297

modularity and 314

base, logarithms 27–8, 30

beats 143, 144

Belbruno, Edward 69, 70

Bell, Alexander Graham 183

‘bell curve’ see normal distribution

The Bell Curve (book) 123–5, 127

Berkeley, George, Bishop of Cloyne 44–6, 50–1

Bernoulli, Daniel 169, 204–5

Bernoulli, Jacob 112–14

Bernoulli, John 137–9, 141–3, 145, 154

Bessel functions 146

Big Bang 210, 235–9, 241

binary notation 271–3

binomial coefficients 113–14

binomial distribution 120

bioinformatics 281

Black, Fischer 304, 305

black body radiation 248

black holes 235–6

Black–Scholes Equation 295, 304–6, 314, 318, 320

critique of 310–11

variants of 306, 309

‘black swan events’ 303

blip-like Fourier analysis 161–2

blood flow 174–5

Boltzmann, Ludwig 206–9, 247–9, 281

Bolzano, Bernard 51

Bombelli, Rafael 75, 78, 80–1

Boulliau, Ismaël (Bullialdus) 59, 61

boundary conditions 212, 214, 318

Boyle, Robert 200

Boyle’s law 205–6

Brahe, Tycho 12, 58

braids 103

Branca, Giovanni 199

Briggs, Henry 24–5, 27–8

Brownian motion (Robert Brown) 208

as financial system model 301, 303, 304, 307

bubonic plague 37–8

‘butterfly effect’ 290, 292–3

C

calculation, Napier on 24–5

calculus

complex analysis 82, 84

history 38–42

Leibniz and 39, 42–5, 50

logical flaws 44–6, 51

Newton and 37–8, 41–6, 50

partial derivatives 139–40

utility 50, 51–2

Cantor, Georg 156

car design 172, 174

carbon dioxide 176–7, 209–10

Cardano, Girolamo 75, 77–80, 109–10, 323n–324n

Carnot cycle (Nicolas Léonard Sadi Carnot) 202–4

Cartesian coordinates (René Descartes) 13

cellular automata 320

central limit theorem 119–20, 324n

CFD (computational fluid dynamics) 170, 173

chaos theory 64–5, 69, 70

breadmaking analogy 289–90

deterministic chaos 283, 285, 291, 293

logistic equation 283, 286

population dynamics and 286–7, 291–2, 330n

sensitivity to initial conditions 290

topology and 92, 105

weather and 175, 292–3

Charles, Jacques Alexandre César 200

circles

aerofoils from 86

equations for 14

knots as 100

lines of force as 85

Clapeyron, Émile 201

Clausius, Rudolf 203, 205–6

climate change 175–7, 209

clustering and statistics 127

coding theory 276–9

Cohen, Jack 229, 328n

coin tosses 110, 112–16, 272–4, 288

collateralised debt obligations 309, 312

colouring, knot diagrams 102

comets

Giacobini–Zinner 69

Great Comet of 1577 58, 323n

Oterma 66–7

commodity prices 298, 304, 310–12

communication channels

capacity 275

noise 269

commutative law 87, 279

complex analysis 82, 100

complex equations 86

complex functions 85–6

complex numbers 81, 82, 250–2

definition of 87

logarithms of 29

see also imaginary numbers

complexity science and economic models 310

compressible fluid, air as 168

compression algorithms 157–60

computational fluid dynamics (CFD) 170, 173

computers, market growth 271

confidence, statistical 122

conic sections 57

ellipses 41, 57–9, 61, 63

parabolas 41, 48, 57

conservation laws 48, 49, 225

conservation of energy

first law of thermodynamics and 200, 201–2

kinetic theory and 205

laws of motion and 48, 68

special relativity and 225

conservation of momentum 171, 225

continuity in topology 92, 96–7

continuous functions 46, 156, 274

continuum mathematics 310, 320

continuum mechanics 174

continuum models 171

convergence issues 155–6

coordinate geometry 13, 161

Copenhagen interpretation 252–62, 328n

Copernicus, Nicolaus 57–8

‘cosine rule’ 11

cosines 10, 83–4, 142–3, 152–4

cosmological constant 236, 237

cosmological microwave background 236, 241

credit default swaps 308–9, 312

Crick, Francis 105

crown and anchor game 111

cryptography 269, 280

cube roots 29, 64, 79

cubes, and topology 91

cubic equations 79–80, 323n–324n

curl, Maxwell’s equations 187–8, 326n

curved surface geometry 15–19, 231–2

D

d’Alembert, Jean Le Rond 139–42, 145

dark energy 237, 238, 239, 240, 242

dark matter 237–8, 239, 240, 242

data compression

digital photography 157–60

fingerprints 162

medical imaging 163

Daubechies, Ingrid 161, 162

Davy, Humphry 182

de Broglie, Louis-Victor 249

decibel unit 34

decoherence 257–8, 264

Dellnitz, Michael 72

derivatives (calculus) 43–5, 47, 50–2

partial derivatives 139–40, 170

derivatives (financial instruments) 297–8, 308–9

volumes traded 300, 308–9

Descartes, René 13, 91, 95

determinism

distinguished from predictability 290–1, 293

distinguished from randomness 288

deterministic chaos 283, 285, 291, 293

differential equations 47, 52

complex functions and 85–6

entropy 204

inevitability of chaos and 286–7, 289

Schrödinger’s wave equation 250

see also partial differential equations

differential geometry 95, 231

differentiation, introduced 43

diffraction 223, 250, 257

X-rays 106, 157

digital photography 157–60

dimensions

heat equation 152

multidimensional geometry 276, 278–9

Navier-Stokes equation 171

Solar System description 66, 96

superstring theory 105, 319

topology 100

vectors 186

wave equations 144–5

Diophantus 78

discontinuous functions 143, 154, 155

discrete cosine transform 159

disease clusters 128

divergence (Maxwell’s equations) 187

division by zero 45, 51, 322n

DNA

encoded information 281–2, 319

Fourier transforms 157

topology and 105–6

dodecahedra 91

Doppler effect 236–7, 241

dotcom companies 307, 311

drug testing 122, 127

drums 144–6

E

E=mc2 219, 227–9, 327n–328n

e (constant) 30, 84

Earth interior of 147

Moon effects on 291

shape of 8–9

size of 11, 12, 56

views of 167–8

earthquakes 30, 144–7, 157, 221

economics, classical 310

ecosystems

and chaos 286–7, 291–2

modelling, finance analogy 312–14

edges, in topology 58, 98, 99

Edison, Thomas 183

efficiency, in error detection 270, 279

eggs

assembling 214

unboiling 211–12

Egyptian mathematics 8, 11

eigenfunctions 251–2, 255–9

Einstein, Albert 219–20

and atomic weapons 229–30

Brownian motion 208

E=mc2 219, 227–9, 327n–328n

field equations 231, 235, 240–1

photoelectric effect 249

special relativity 224–5

electromagnetic field 185–6, 221

electromagnetic induction 186

electromagnetic spectrum 189, 192–3

electromagnetism

impact on everyday life 181

magnetohydrodynamics and 318

electrostatics 85, 151, 242

Elements (Euclid) 4, 14–15

ellipses 41, 57–8, 59, 61, 63

Hohmann transfer ellipses 65, 69

energy

conservation of 48, 68, 200–2, 205, 225

dark energy 237

defined 48–9

kinetic energy 48–9, 68, 202, 203, 205, 229

potential energy 48–9, 68

renewable resources 209–10

energy landscapes 68–72

engineers’ use of logarithms 29, 30

Enron Corporation 308

entropy 203–4, 206, 209, 211, 213–14

as ‘missing information’ 281

enzymes 106

equals sign vii

equations

alternatives to 319–20

describing lines on planes 13–14

E=mc2 as archetype 219, 227–9, 327n–328n

‘most beautiful’ 84

Pythagoras’s Theorem 5

quadratic 78–9

symmetry of 211

types of vi–vii, 318

wider influence of 317–18

see also differential equations

Eratosthenes Batavus 12

Eratosthenes (of Cyrene) 11

error-detection and -correction codes 267–8, 270, 276, 278, 280

errors

channel capacity and 275

normal distribution 115, 116, 119

‘ether’ 221–3, 247

Euclid of Alexandria

on conic sections 57

fifth axiom 14–15

proof of Pythagoras’s Theorem 4

on regular solids 4, 91

eugenics movement 124

Euler, Leonhard 69, 78, 84, 160

fluid dynamics 168–9, 170

formula for polyhedra 89, 92–4, 97

Euler characteristic 95, 97, 101

Everett, Hugh, Jr. 258–60

evolution of sensory perception 33–4

evolutionary computing 319

exchange traded funds (ETFs) 311–12

‘expectation’ and probability 111

exponential functions 30

complex numbers 83–4

heat equation 152, 154

extreme events 302–4, 306–7

F

faces, regular solids 58

Faraday, Michael vii, 181–6

fat tails 302–3, 306, 309

Fechner, Gustav 33

Fermat, Pierre de 39, 44, 111

Feynman, Richard 257, 261

Feynman diagrams 105

fields, in electromagnetism 85–6, 96, 182, 185–7

‘financial ecosystems’ 313–14

financial instruments 297, 299, 306, 308

see also derivatives; futures and options

financial transactions tax 313

fingerprints 162

Fisher, Ronald Aylmer 122, 128

five-body dynamics 71

fluid dynamics

before Euler 169

magnetohydrodynamics 318

fluids

application of Newton’s laws of motion 170

mathematics of magnetism and 185

fluxions 42, 46, 50

Food and Drugs Administration (US) 174

forces

in laws of motion 47, 55

lines of force 85, 185, 187

related to curvature 18, 20

see also gravity

Fourier, Joseph 151

Fourier analysis 155

Fourier transform 149

blips 160

data compression 159

error distributions and 119

Schrödinger’s equation 251

uses 149, 156

free will 116

friction 47, 170, 201–2, 212–13

Fukushima Dai-ichi power plant 31

functions

complex functions 85–6

exponential functions 30, 83–4, 152, 154

futures and options 299, 305, 308, 330n

fuzzy boundary theory 69

G

galactic rotation curves 237–8, 241

Galileo Galilei 39–42, 47–8, 224, 230

Galois fields (Évariste Galois) 280

Galton, Francis 119–21

games of chance 109–11

gas laws 200–1, 205–6

Gauss, Carl Friedrich

electromagnetism 183

imaginary numbers 81–2

least squares method 118

magnetism 96

and non-Euclidean space 16–17, 18–19

notation 78

‘Gaussian curvature’ 18

general relativity 220, 231, 240

tests of 233–5, 242, 243

geocentric universe 8, 56

geometry

coordinate geometry 13

curved surface geometry 12, 15–19, 231–2

multidimensional 276, 278–9

non-Euclidean 15–16

relation to algebra 9

topology 91–100, 105

global warming 175–7

GPS (Global Positioning System) 13, 219, 242–3

gravitational constant 59, 323n

gravity

Galileo’s investigations 39–41

general relativity and 220, 231–2

inverse square law 37, 61–2

Newton’s law of 53, 55, 60–1, 65, 230

three-body problem 63

Greene, Brian 255, 259

greenhouse gases 176

Greenspan, Alan 314

groups (algebra) 101

H

Haldane, Andrew 312–14

half-lives, radioisotopes 31–2

Hamilton, William Rowan 86–7

Hamiltonian operators 250, 251

Hamming, Richard 276, 277, 279

Hardy, Godfrey Harold 184

harmonics 143

harmonies 134–5, 137, 139, 143–4

hearing, human 33–4

heat

and temperature 203–4

time-reversal scenario 212

heat equation (Fourier) 151, 156

financial analogue 302, 304

heat flow 198

hedge funds 306, 309

heights

of children 121

of structures 10–11

Heisenberg, Werner 250

heliocentric theories 56–8

Henry, Joseph 182

herd instinct 311

heredity 120–1

Hero of Alexandria 11, 198

Hertz, Heinrich 190

Hitler, Adolph 259–61

Hohmann transfer ellipses 65, 69

hole-through-a-hole-in-a-hole 95–6, 97

holes in tori 94–7, 99

HOMFLY polynomial 104

Hooke, Robert 59–61, 137, 322n

Hubble, Edwin 236

Huffman code 159

Huisman, Jef 291–2

human genome 281, 319

hyperbolic space 16–17

hypercubes 276–7

hypotenuse, defined 5

hypothesis testing 122–3

I

i (imaginary unit). see square root of minus one

icosahedra 91

images. see data compression; photography

imaginary numbers 75–6, 82

see also complex numbers

India

astronomy 56

Great Trigonometric Survey 12–13

infinite series 83–4, 142–3, 145, 153–4, 161

infinitesimals 45, 50

inflation 237, 238, 239–40, 242

information

as a measurable quantity 268, 269–70

as negative entropy 213

redundant 158

information content, H 265, 273–4, 329n

instantaneous rates of change 41, 43

integral calculus

entropy and 204

introduced 43

magnetism and 96

integration theory 156

intelligence and IQ testing 124–7

International Monetary Fund 307, 311

Interplanetary Superhighway 72, 105

intervals 134–6

invariants, combinatorial 96

invariants, topological 89, 93–4, 96–7, 101, 103–4

inverse square laws

expected for electromagnetism 185

gravity 37, 61–2, 230

IQ testing 124–7

irrational numbers 155

ISEE (International Sun-Earth Explorer)-3 69

J

Japanese earthquake, 2011 30–1

Jones polynomial (Vaughan Jones) 103–4, 105, 106

Joukowski transformation 86

JPEG (Joint Photographic Experts Group) 158

Jupiter

orbital resonances 67, 71

tubes near 70, 71, 72

K

Kelvin, William Thomson, Lord 247

Kepler, Johannes 39, 41, 58–9, 63

Keynes, John Maynard 38, 322n

kinetic energy 48–9, 68, 202–3, 205, 229

kinetic theory of gases 200, 202, 204–6

Klein bottle (Felix Klein) 98

knot diagrams 101–2, 104–5

knots 100–5

Koon Wang-Sang 67, 70, 71

Krönig, August 205

L

Lagrange, Joseph-Louis 69

Lagrange points 67, 69–71

Laplace, Pierre Simon de 29, 119–20

Laplacians 145–6, 326n

Large Hadron Collider 219, 242

lasers 263–4, 268

law of gravity (Newton) 53, 60–1, 65, 230

law of large numbers 113, 114

laws of conservation. see conservation laws

laws of motion (Newton) 45, 46–7, 60

application to fluids 170

MOND and 240

laws of planetary motion (Kepler) 39, 58–9, 61

laws of thermodynamics 200, 210–11

first law 200, 201–2

second law 197, 204, 209–10, 213, 326n–327n

zeroth law 203

Le Verrier, Urbain 233–4

least squares method 117–18, 125

Lebesgue, Henri 156

Legendre, Adrien-Marie 117–18

Leibniz, Gottfried Wilhelm 39, 42–5, 50, 81

Lemaître, Georges 236

life, and the second law of thermodynamics 210

light

as an electromagnetic wave 189, 220

particulate behaviour 227–8, 249

wave-particle duality 249–50

see also speed of light

light bulbs 247

light cones 227

limits, concept of 51, 323n

linear equations 141

linking numbers (electromagnetism) 96

Listing, Johann 96, 98–9

logarithmic multiplication equation 21, 29

logarithms 24–9

of complex functions 86

human perception and 33–4

natural 30

in nature 33–4

slide rules and 30

of trigonometric functions 29, 31

logistic equation 283, 286–8

Long Term Capital Management (LTCM) 306–7

Lorenz, Edward 289, 290

Lorenz, Hendrik 223–4

Lorenz-FitzGerald contraction 223–6

M

MacKay, Robert 241

magnetism 85–6, 96

magnetohydrodynamics 318

manifolds 18–19, 231, 240

manned flight 167

many-worlds interpretation 258–61

maps

disc-shaped Earth 9

trigonometry and 11, 12–13

Marconi, Guglielmo 191

‘mark to market accounting’ 308, 309

mathematical models

Brownian motion 208, 301

climate forecasting 176

cosmological 56, 241

financial 301, 306

gas laws 200

statistical models 113, 172

vibrating strings 137–8

warnings about 127, 310

matrices 19, 231

Maxwell, James Clerk 181, 183, 206, 208

Einstein and 224

Maxwell-Boltzmann distribution 206, 247

May, Robert (Lord May of Oxford) 286, 288, 291, 312–14

mean, defined 115

mean free paths 205

measurement, quantum mechanics 252, 256

medical imaging 162–3

medical research 174

medical use of lasers 263

Meitner, Lise 230

memory 213–14

Mercury 233

Merton, Robert 304, 305

Michelson, Albert 222–3, 224

microwaves 192–3, 236

‘Midas formula’ 305

Milgrom, Mordehai 240

Millikan, Robert 248

mines 199–200

Minkowski, Hermann 227–8, 232

mixing and chaos 290, 293

Möbius, August 96, 98

modes, vibrational 139, 145, 147, 248

molecules, in thermodynamics 200, 205–6

momentum 49, 171, 249

conservation of 171, 225

MOND (modified Newtonian dynamics) 240

Moon

effects on Earth 291

origins 49, 323n Morley, Edward 222–3, 224

Morse, Samuel 183

mortgages betting on defaults 309

self-certified 301

subprime 298, 311–12

motion, Newton’s laws of 45, 46–7, 60, 170, 240

multidimensional geometry 276, 278–9

multiplication

equation for logarithmic 21

relative complexity of 25–6, 27–8

music 133–6

N

Napier, John 24–9

natural logarithms 30

nature

as essentially mathematical 38

instances of chaos in 285

logarithms in 33–4

Navier, Claude-Louis 169, 170

Navier–Stokes Equation 165, 169, 171, 175, 177

negative entropy 213

Neugebauer, Otto 7

neutrinos 226, 327n

Newcomen, Thomas 199

Newton, Isaac

calculus and 37–8, 41–6, 50

Hooke and 59–61, 322n

influence 38–9, 63, 65–6

Kepler and 59, 61

laws of motion 45, 46–8

Leibniz and 39, 42–4, 50

physics of 220

night sky, interpretation 55–6

Nobel Prize in Economics 305, 330n nodes 143

noise measurement 34

noise removal 157, 163, 269

non-Euclidean geometries 15–16

normal distribution (bell curve)

definition 115

effect of combining 120

errors 115, 116, 119

financial models and 301–2

formula for 107

kinetic theory of gases 206

null hypotheses and 123

social sciences 116, 119

normal modes 145, 147, 248, 251, 325n

notation

algebraic 78

Leibniz and Newton 42, 43

origin of number symbols 23

origin of the equals sign vii

nuclear accidents 31, 32–3

null hypotheses 122–3

number symbols, origin 23

O

observational limitations, quantum mechanics 252, 256

octahedra 91

octaves 135–6, 143

odds, statistical 110–11

oil price 306

oil prospecting 148

operator algebras 103

options, futures and 299, 305, 308, 330n

orbital resonances, Jupiter 67, 71

Ordnance Survey of Great Britain 12

Ørsted, Hans Christian 182

orthogonality 160

P

parabolas 41, 48, 57

parallel universes 258–61

partial derivatives 139–40, 170

partial differential equations 141, 151, 169, 172, 320

Black–Scholes as 304, 310

Pascal, Blaise 111, 113, 324n

Penrose, Roger 239, 328n

philosophical questions

action at a distance 221

heliocentrism 57

mathematics and reality vii–viii, 82, 127

quantum mechanics 252, 254, 318

status of relativity 224

time’s arrow 208, 211

photoelectric effect, Einstein and 249

photography 157–60

photons 228, 249, 257

pianos 136

picture frame topology 93–4

π (constant) 84, 320

Planck, Max (and Planck’s constant) 247–9, 250

planetary motion laws 39, 58–9, 61

plankton paradox 291–2, 330n

playing cards illustrations 147, 206–7, 211, 214

Plimpton, George Arthur 7

Poincaré, Henri 224, 302

chaos theory and 63–4, 105, 285, 289

polyhedra

Euler’s formula 89, 92–4, 97

see also regular solids

polynomials

Alexander polynomial 103, 104

calculus application to 44, 323n

HOMFLY polynomial 104

Jones polynomial 103–4, 105, 106

Reed-Solomon encoding 280

Poovey, Mary 307–8, 310, 330n

population dynamics and chaos 286–7, 291–2, 330n

positive feedback 298

potential energy 48–9, 68

power, ‘new axis of’ 307

pressure, in ideal gases 205

Principia (Newton)

absence of calculus 46, 50

astronomical significance 55, 59

influence of 38, 55, 151

priority disputes 42, 44, 60–1, 118

probability and wave functions 253

probability theory

crown and anchor game 111

drug testing and 127

financial models and 301

message encoding and 272–4

origins 111

risk and 128–9

see also normal distribution

projective plane 98

property, as security 297–8, 301, 311

prosthapheiresis 27, 322n

Ptolemy (Claudius Ptolemaeus) 42, 56–7, 134

pumps, steam 199–200

Pythagoras 3, 8

Pythagoras’s Theorem

coding theory and 276

consequences 9

curved surfaces and 17, 19

distance calculations from 14

origins and antecedents 4, 6

proofs 4, 6

special relativity and 225–7

Pythagorean triples 5

Pythagorean world view 3, 56, 58, 134–7, 143

Q

quadratic equations 78–80

quantum computers 264

quantum dots 264

quantum field theory and topology 92

quantum mechanics

and the classical world 255–9, 260–1

imaginary numbers in 76, 250–1

many-worlds interpretation 258–61

observational limitations 252, 256

practical utility 261–4

Schrödinger’s wave equation 250

vacuum energy discrepancy 328n

quartic equations 79–80

Quetelet, Adolphe 116–17, 119, 121, 124

quincunxes 120

R

race and IQ 124

radar 192

radio 190

radioactive decay 31–3, 267

random walks 301–2

randomness

chaos distinguished from 285

distinguished from determinism 288

patterns in 109

Recorde, Robert vii

Reed-Solomon codes 280

regression to the mean 121

regular solids

Descartes and 91, 95

Euclid and 4, 91

Euler’s formula 89, 92–4, 97

Kepler and 58

Reidemeister moves (Kurt Reidemeister) 101–3

relativity

general relativity 220, 231, 233–5, 240, 242–3

misleadingly named 219–20

special relativity 220, 224–9, 242–3

renewable energy 209–10

rice trading, Dojima exchange 298–9, 312

Riemann, Georg Bernhard 18–20, 95, 156, 231, 276

Riemannian metric 19, 231, 277

risk

derivatives and 309–10, 312

financial, assessment 309, 314

probability theory and 128–9

Rourke, Colin 241

Royal Institution, London 181–2

Rule 110

automaton 320

Russian financial crisis, 1998 306–7

S

Sachs, Abraham 7

satnavs and relativity 219, 242

Scholes, Myron 304, 305

Schrödinger, Erwin 213, 250–1, 253–4

Schrödinger’s cat 253–6, 258–60, 318

Schwarzschild, Karl 235

science fiction 66, 329n

seismic waves 144–7, 157, 221

semiconductors 191–2, 261–2

sensory perception

data compression and 159–60

logarithms and 33–4

Shannon, Claude 269–70, 272–4, 279, 329n

ship design 172

Shockley, William 192, 262

short-selling 304

simplification, in topology 93, 101

sine curves 137–8

sines 10, 83–4, 142–3, 152–4

singularities 100, 235

slide rules 30

Smale, Stephen 289–90

Smoluchowski, Marian 208

Snellius, Willebrord 12

Snell’s law 257, 261

Snow C(harles) P(ercy) 197–8, 209

social sciences

mathematical models 127

normal distributions 116, 121

Solar System prediction horizons 290–1

sound levels 34

sound recordings 157, 162

sound waves 133–6, 146

space missions

Apollo programme 65–6, 168

Hiten probe 69

interplanetary travel 67–8, 71–2

Newton’s law of gravity 65

view of Earth and 167–8

Voyager 1 and 2 267, 276

space-time

curvature 231–2

geometries 227–8, 235, 237

inflation and 240–1

Lorenz-FitzGerald contraction 225

topology and 105

Spearman, Charles 125–7

special relativity 220, 224–9, 242–3

speculation, financial 300, 302, 309, 312

speed of light

the ether and 222

Gran Sasso neutrinos 327n

Maxwell’s equations 188–9

special relativity and 224–6

spheres

from deformation of solids 92–4, 97

hypercubes and 278–9

spherical geometry 12, 16, 17

square root of minus one 73, 77, 250–1

see also complex numbers; imaginary numbers

square roots

in Babylonian mathematics 7

duality of 76–7

solving cubic equations 79–80

using logarithms 29

square waves 153, 155

squaw on the hippopotamus joke 3–4, 321n

standard deviation

defined 115

and extreme events 302–3

statistical mechanics 206

statistics

law of large numbers 113, 114

of randomness 109

statistical significance 122

steady state (populations) 287

steady state (universe) 241

steam engines 198–200

stents 174

stock market fluctuations 302

Stokes, George Gabriel 169, 170

subduction 147

subprime mortgage market 298, 311–12

Sundman, Karl Fritiof 64–5

superposition principle

applied to cats 253–5, 258, 328n

applied to the universe 258

linear equations 141, 153

Schrödinger’s equation 251–2, 257

supersonic flight 173–4

superstring theory 105, 319

surfaces, in topology 98–100

surveying 11–12

symbolic dynamics 288

symmetric tensors 19, 231

symmetry, of equations and solutions 211

T

T-waves 193

Taleb, Nassim Nicholas 303

tangents 10

‘tangles’ 106

Taqi al-Din Muhammad ibn Ma’ruf al-Shami al-Asadi 199

telephony

Fourier transforms 156–7

progress in 268

temperature

definition and measurement 202–3

in ideal gases 205–6

tensors 19, 231–2

Tesla, Nikola 191

tetrahedra 91

Theory of Everything 319

thermodynamics

classical 200, 204

defined 198, 200

see also laws of thermodynamics

three-body problem 63–5, 69, 320

time, arrow of 208, 211, 213, 318

time-reversal symmetry 211, 214–15

topological dynamics 65, 289

topology 91–100, 105

tori 94–5, 97–9

transistors 191–2, 261–2

trefoil knots 102–3, 106

triangles

non-right-angled 9, 11, 321n

right-angled 5, 8–10

triangulation 12–13

trigonometric functions

complex numbers 83, 84

heat equation 152–4

logarithms of 29, 31

vibrational frequencies 146

see also cosines; sines

trigonometry 9–12

Trojan points 69

tsunamis 31, 147, 221

tubes 66, 70–2

turbulence 171–2, 192

Tycho Brahe 12, 58

U

ultraviolet catastrophe 248–9

uncertainty 290, 299

see also probability theory

Unified Field Theory 319

universal law of gravity 61–2

universe

age of 241

expansion of 236, 241

‘heat death’ 209

matter distribution 210, 240–1

parallel universes 258

unknot, the 100–5

V

vacuum energy 239, 328n

‘value at risk’ calculations 309

variance 115, 121, 125–6

vector calculus 188, 193, 326n

vector fields 187

vectors defined 186

velocity

defined 39

as a vector 186

velocity fields 170

Venus missions 72

vertices

hypercubes 276

regular solids 91–6

vibrating strings 134–5, 137–8, 140, 143, 325n

and time intervals 40

vibrational frequencies 145–6

vibrational modes (black body radiation) 248

violin string vibration 133–4, 137

vision, human 159–60

volcanic eruptions 147, 177

Vulcan (hypothetical planet) 233–4, 328n

W

Wallis, John 39, 44, 81–2

Wang Sang Koon 67, 70, 71

Warson, James 105

water, and fluid dynamics 168

Watt, James 198

wave equation 131, 139, 141–2, 144

animations 325n

heat equation compared 152–3

Maxwell and 188–9

multi-dimensional 144

Schrödinger’s 250–1, 257

wave functions 250–1, 252–3, 255–6, 258–60

wave number 143

wave-particle duality/wavicles 249–50

wave phenomena 133

wavelet/scalar quantization (WSQ) method 162

wavelets 161–2, 163

waves, analysis 86

weather forecasting 289, 292–3

Weber-Fechner law 33–4

Weierstrass, Karl 51

Weissing, Franz 291, 292

Wessel, Caspar 81, 82, 87

wind tunnels 172–3

Wolfram, Stephen 320

X

X-events (extreme events) 302–4, 306–7

X-ray diffraction 106, 157

X-rays 192

Z

zero, approaching 50, 51

zero, division by 45, 51, 322n