Contents

PREFACE

Chapter 1.    Introduction

1-1.    Basic Ideas and the Classical Definition

1-2.    Motivation for a More General Theory

           Selected References

Chapter 2.    A Mathematical Model for Probability

2-1.    In Search of a Model

2-2.    A Model for Events and Their Occurrence

2-3.    A Formal Definition of Probability

2-4.    An Auxiliary ModelProbability as Mass

2-5.    Conditional Probability

2-6.    Independence in Probability Theory

2-7.    Some Techniques for Handling Events

2-8.    Further Results on Independent Events

2-9.    Some Comments on Strategy

           Problems

           Selected References

Chapter 3.    Random Variables and Probability Distributions

3-1.    Random Variables and Events

3-2.    Random Variables and Mass Distributions

3-3.    Discrete Random Variables

3-4.    Probability Distribution Functions

3-5.    Families of Random Variables and Vector-valued Random Variables

3-6.    Joint Distribution Functions

3-7.    Independent Random Variables

3-8.    Functions of Random Variables

3-9.    Distributions for Functions of Random Variables

3-10.  Almost-sure Relationships

           Problems

           Selected References

Chapter 4.    Sums and Integrals

4-1.    Integrals of Riemann and Lebesgue

4-2.    Integral of a Simple Random Variable

4-3.    Some Basic Limit Theorems

4-4.    Integrable Random Variables

4-5.    The Lebesgue-Stieltjes Integral

4-6.    Transformation of Integrals

           Selected References

Chapter 5.    Mathematical Expectation

5-1.    Definition and Fundamental Formulas

5-2.    Some Properties of Mathematical Expectation

5-3.    The Mean Value of a Random Variable

5-4.    Variance and Standard Deviation

5-5.    Random Samples and Random Variables

5-6.    Probability and Information

5-7.    Moment-generating and Characteristic Functions

           Problems

           Selected References

Chapter 6.    Sequences and Sums of Random Variables

6-1.    Law of Large Numbers (Weak Form)

6-2.    Bounds on Sums of Independent Random Variables

6-3.    Types of Convergence

6-4.    The Strong Law of Large Numbers

6-5.    The Central Limit Theorem

           Problems

           Selected References

Chapter 7.    Random Processes

7-1.    The General Concept of a Random Process

7-2.    Constant Markov Chains

7-3.    Increments of Processes; The Poisson Process

7-4.    Distribution Functions for Random Processes

7-5.    Processes Consisting of Step Functions

7-6.    Expectations; Correlation and Covariance Functions

7-7.    Stationary Random Processes

7-8.    Expectations and Time Averages; Typical Functions

7-9.    Gaussian Random Processes

           Problems

           Selected References

Appendixes
Appendix A.   Some Elements of Combinatorial Analysis

Appendix B.   Some Topics in Set Theory

Appendix C.   Measurability of Functions

Appendix D.   Proofs of Some Theorems

Appendix E.   Integrals of Complex-valued Random Variables

Appendix F.   Summary of Properties and Key Theorems

BIBLIOGRAPHY

INDEX