Table of Contents

  1. Cover
  2. Title Page
  3. About the Authors
  4. List of Figures
  5. List of Tables
  6. Preface
  7. 1 The Opportunity
    1. 1.1 Introduction
    2. 1.2 The Rise of Data
    3. 1.3 Realising Data as an Opportunity
    4. 1.4 Our Definition of Monetising Data
    5. 1.5 Guidance on the Rest of the Book
  8. 2 About Data and Data Science
    1. 2.1 Introduction
    2. 2.2 Internal and External Sources of Data
    3. 2.3 Scales of Measurement and Types of Data
    4. 2.4 Data Dimensions
    5. 2.5 Quality of Data
    6. 2.6 Importance of Information
    7. 2.7 Experiments Yielding Data
    8. 2.8 A Data‐readiness Scale for Companies
    9. 2.9 Data Science
    10. 2.10 Data Improvement Cycle
  9. 3 Big Data Handling, Storage and Solutions
    1. 3.1 Introduction
    2. 3.2 Big Data, Smart Data…
    3. 3.3 Big Data Solutions
    4. 3.4 Operational Systems supporting Business Processes
    5. 3.5 Analysis‐based Information Systems
    6. 3.6 Structured Data – Data Warehouses
    7. 3.7 Poly‐structured (Unstructured) Data – NoSQL Technologies
    8. 3.8 Data Structures and Latency
    9. 3.9 Data Marts
  10. 4 Data Mining as a Key Technique for Monetisation
    1. 4.1 Introduction
    2. 4.2 Population and Sample
    3. 4.3 Supervised and Unsupervised Methods
    4. 4.4 Knowledge‐discovery Techniques
    5. 4.5 Theory of Modelling
    6. 4.6 The Data Mining Process
  11. 5 Background and Supporting Statistical Techniques
    1. 5.1 Introduction
    2. 5.2 Variables
    3. 5.3 Key Performance Indicators
    4. 5.4 Taming the Data
    5. 5.5 Data Visualisation and Exploration of Data
    6. 5.6 Basic Statistics
    7. 5.7 Feature Selection and Reduction of Variables
    8. 5.8 Sampling
    9. 5.9 Statistical Methods for Proving Model Quality and Generalisability and Tuning Models
  12. 6 Data Analytics Methods for Monetisation
    1. 6.1 Introduction
    2. 6.2 Predictive Modelling Techniques
    3. 6.3 Pattern Detection Methods
    4. 6.4 Methods in practice
  13. 7 Monetisation of Data and Business Issues: Overview
    1. 7.1 Introduction
    2. 7.2 General Strategic Opportunities
    3. 7.3 Data as a Donation
    4. 7.4 Data as a Resource
    5. 7.5 Data Leading to New Business Opportunities
    6. 7.6 Information Brokering using Data
    7. 7.7 Connectivity as a Strategic Opportunity
    8. 7.8 Problem‐solving Methodology
  14. 8 How to Create Profit Out of Data
    1. 8.1 Introduction
    2. 8.2 Business Models for Monetising Data
    3. 8.3 Data Product Design
    4. 8.4 Value of Data
    5. 8.5 Charging Mechanisms
    6. 8.6 Connectivity as an Opportunity for Streamlining a Business
  15. 9 Some Practicalities of Monetising Data
    1. 9.1 Introduction
    2. 9.2 Practicalities
    3. 9.3 Special focus on SMEs
    4. 9.4 Special Focus on B2B Lead Generation
    5. 9.5 Legal and Ethical Issues
    6. 9.6 Payments
    7. 9.7 Innovation
  16. 10 Case Studies
    1. 10.1 Job Scheduling in Utilities
    2. 10.2 Shipping
    3. 10.3 Online Sales or Mail Order
    4. 10.4 Intelligent Profiling with Loyalty Card Schemes
    5. 10.5 Social Media: a Mechanism to Collect and Use Contributor Data
    6. 10.6 Making a Business out of Boring Statistics
    7. 10.7 Social Media and Web Intelligence Services
    8. 10.8 Service Provider
    9. 10.9 Data Source
    10. 10.10 Industry 4.0: Metamodelling using Simulated Data
    11. 10.11 Industry 4.0: Modelling Pricing Data in Manufacturing
    12. 10.12 Monetising Data in an SME
    13. 10.13 Making Sense of Public Finance and Other Data
    14. 10.14 Benchmarking who is the Best in the Market
    15. 10.15 Change of Shopping Habits Part I
    16. 10.16 Change of Shopping Habits Part II
    17. 10.17 Change of Shopping Habits Part III
    18. 10.18 Service Providers, Households and Facility Management
    19. 10.19 Insurance, Healthcare and Risk Management
    20. 10.20 Mobility and Connected Cars
    21. 10.21 Production and Automation in Industry 4.0
  17. Bibliography
  18. Glossary
  19. Index
  20. End User License Agreement

List of Tables

  1. Chapter 02
    1. Table 2.1 Typical internal and external data in information systems.
    2. Table 2.2 Extract of sales data.
    3. Table 2.3 Company sales data analytics.
    4. Table 2.4 Internal sales data enriched with external data.
    5. Table 2.5 Scales of measurement examples.
    6. Table 2.6 Checklist for data readiness.
  2. Chapter 04
    1. Table 4.1 Confusion matrix for comparing models.
  3. Chapter 05
    1. Table 5.1 Partially tamed data.
    2. Table 5.2 Outcomes of a hypothesis test.
    3. Table 5.3 Typical significance borders.
    4. Table 5.4 Examples of statistical tests.
    5. Table 5.5 Example of a contingency table.
    6. Table 5.6 Target proportions.
    7. Table 5.7 Confusion matrix.
    8. Table 5.8 Gains chart.
    9. Table 5.9 Non‐cumulative lift and gains table.
  4. Chapter 06
    1. Table 6.1 Example of a contingency table.
    2. Table 6.2 Analysis table for goodness of fit.
  5. Chapter 08
    1. Table 8.1 Business models for types of exchange.
    2. Table 8.2 Business models for B2C selling.
    3. Table 8.3 Business models for service providers.
  6. Chapter 09
    1. Table 9.1 Business model canvas of the comparisons between data brokers and insight innovators.
  7. Chapter 10
    1. Table 10.1 Summary of case studies.
    2. Table 10.2 Risk scores in a simple case.
    3. Table 10.3 Distribution of risk scores in different seasons.
    4. Table 10.4 Allowable stress for soft impact.
    5. Table 10.5 Parameters used to describe a four‐sided glass panel.
    6. Table 10.6 Data dimensions and stakeholders.

List of Illustrations

  1. Chapter 01
    1. Figure 1.1 Where does big data come from?.
    2. Figure 1.2 Big data empowers business.
    3. Figure 1.3 Roadmap to success.
    4. Figure 1.4 Wish list for generating money out of data.
    5. Figure 1.5 Monetising data.
  2. Chapter 02
    1. Figure 2.1 Deming’s ‘Plan, Do, Check, Act’ quality improvement cycle.
    2. Figure 2.2 Six Sigma quality improvement cycle.
    3. Figure 2.3 Example of data maturity model.
    4. Figure 2.4 Data improvement cycle.
  3. Chapter 03
    1. Figure 3.1 Big data definition.
    2. Figure 3.2 Internet of things timeline.
    3. Figure 3.3 Example data structure.
    4. Figure 3.4 NoSQL management systems.
    5. Figure 3.5 Big data structure and latency.
  4. Chapter 04
    1. Figure 4.1 Supervised learning.
    2. Figure 4.2 Unsupervised learning.
    3. Figure 4.3 The CRISP‐DM process.
    4. Figure 4.4 The SEMMA process.
    5. Figure 4.5 General representation of the data mining process.
    6. Figure 4.6 Time periods for data mining process.
    7. Figure 4.7 Stratified sampling.
    8. Figure 4.8 Lift chart for model comparison.
    9. Figure 4.9 Lift chart at small scale.
    10. Figure 4.10 An example of model control.
  5. Chapter 05
    1. Figure 5.1 Raw data from a customer transaction.
    2. Figure 5.2 Bar chart of relative frequencies.
    3. Figure 5.3 Example of cumulative view.
    4. Figure 5.4 Example of a Pareto chart.
    5. Figure 5.5 Example of a pie chart.
    6. Figure 5.6 Scatterplot of company age and auditing behaviour with LOWESS line.
    7. Figure 5.7 Scatterplot of design options.
    8. Figure 5.8 Ternary diagram showing proportions.
    9. Figure 5.9 Radar plot of fitness panel data.
    10. Figure 5.10 Example of a word cloud.
    11. Figure 5.11 Example of a mind map.
    12. Figure 5.12 Location heat map.
    13. Figure 5.13 Density map for minivans.
    14. Figure 5.14 SPC chart of shipping journeys.
    15. Figure 5.15 Decision tree analysis for older workers.
    16. Figure 5.16 Gains chart.
    17. Figure 5.17 Lift chart.
    18. Figure 5.18 ROC curve development during predictive modelling.
  6. Chapter 06
    1. Figure 6.1 Example of logistic regression.
    2. Figure 6.2 Corrected logistic regression.
    3. Figure 6.3 Decision tree.
    4. Figure 6.4 Artificial neural network.
    5. Figure 6.5 Bayesian network analysis of survey data.
    6. Figure 6.6 Bayesian network used to explore what‐if scenarios.
    7. Figure 6.7 Plot of non‐linear separation on a hyperplane.
    8. Figure 6.8 Dendrogram from hierarchical cluster analysis.
    9. Figure 6.9 Parallel plot from K‐means cluster analysis.
    10. Figure 6.10 Kohonen network with two‐dimensional arrangement of the output neurons.
    11. Figure 6.11 SOM output.
    12. Figure 6.12 T‐SNE output.
    13. Figure 6.13 Correspondence analysis output: scatterplot of RPC2 vs RPC1, the two principal dimensions showing how the row profiles in a contingency table differ from each other.
    14. Figure 6.14 Association rules.
    15. Figure 6.15 Association analysis of products.
    16. Figure 6.16 Comparison of customer base and population.
    17. Figure 6.17 Relationship between energy usage and deprivation: scatterplot of mean AQ vs percentage of households deprived.
    18. Figure 6.18 Map showing prices.
  7. Chapter 07
    1. Figure 7.1 Strategic opportunities.
    2. Figure 7.2 How data can boost top‐ and bottom‐line results.
    3. Figure 7.3 Typical data request.
    4. Figure 7.4 Observed data and usage.
    5. Figure 7.5 Maslow’s hierarchy of needs.
    6. Figure 7.6 Data sources to empower consumer business.
    7. Figure 7.7 Ready information on market opportunities.
    8. Figure 7.8 Word cloud from keyword occurrences.
    9. Figure 7.9 Using different data sources for analytics.
    10. Figure 7.10 Daily sleep patterns.
    11. Figure 7.11 Predictive analytics in insurance.
  8. Chapter 08
    1. Figure 8.1 Pathways to monetising data.
    2. Figure 8.2 Segmentation features of walk‐in customers.
    3. Figure 8.3 Business opportunities.
  9. Chapter 09
    1. Figure 9.1 Paths to monetisation.
    2. Figure 9.2 Pareto diagram of customer compliments.
    3. Figure 9.3 Graphical dashboard.
    4. Figure 9.4 Decrypting the DNA of the best existing customers.
    5. Figure 9.5 Aspects of digital maturity.
    6. Figure 9.6 Closed loop of B2B customer profiling – continuous learning.
    7. Figure 9.7 Automated B2B lead generation system.
    8. Figure 9.8 New methods, new insights, smart business.
    9. Figure 9.9 Misleading scatterplots.
    10. Figure 9.10 Scatterplot with multiple features.
    11. Figure 9.11 Histogram of suspicious‐quality recordings.
  10. Chapter 10
    1. Figure 10.1 The evolution of data analytics
    2. Figure 10.2 Cumulative distribution of risk scores.
    3. Figure 10.3 Data sources in the shipping industry.
    4. Figure 10.4 Optimum speed recommendation.
    5. Figure 10.5 Pruned decision tree.
    6. Figure 10.6 Detail from decision tree
    7. Figure 10.7 Customised communication.
    8. Figure 10.8 Individualised communication.
    9. Figure 10.9 Complexity of data mining steps.
    10. Figure 10.10 Data in the customer journey.
    11. Figure 10.11 Intelligent profiles and segments in B2C.
    12. Figure 10.12 Personalised journey.
    13. Figure 10.13 The reach of social media.
    14. Figure 10.14 The power of social media.
    15. Figure 10.15 Using peer group behaviour.
    16. Figure 10.16 National statistics oil prices.
    17. Figure 10.17 Example of reports portal
    18. Figure 10.18 Making a business out of boring statistics.
    19. Figure 10.19 Right place, right time.
    20. Figure 10.20 Social media information summarised.
    21. Figure 10.21 Visualisation of user engagement.
    22. Figure 10.22 Concept of newsletter tracking.
    23. Figure 10.23 Example report on testing different versions.
    24. Figure 10.24 Customer profile details.
    25. Figure 10.25 Company profile details.
    26. Figure 10.26 Example of glass facades in buildings.
    27. Figure 10.27 Half normal plot of a screening experiment.
    28. Figure 10.28 Predicted vs calculated resistance factor with validation.
    29. Figure 10.29 Residual plot of prices.
    30. Figure 10.30 Visualisation of groups of products.
    31. Figure 10.31 Open data available to enrich company data.
    32. Figure 10.32 Diffusion map showing clusters of shares.
    33. Figure 10.33 Sampling approach for benchmarking in China.
    34. Figure 10.34 Three‐step approach to survey analytics.
    35. Figure 10.35 Skateboard offer.
    36. Figure 10.36 Customer journey.
    37. Figure 10.37 Example of customer segments.
    38. Figure 10.38 Virtual changing room.
    39. Figure 10.39 Virtual supermarket at bus stop.
    40. Figure 10.40 Input from miscellaneous IoT sensors.
    41. Figure 10.41 Appealing sleep sensor display.
    42. Figure 10.42 Sensors connected by mobile phone.
    43. Figure 10.43 The connected car.
    44. Figure 10.44 The new connected eco‐system.
    45. Figure 10.45 Industry 4.0.
    46. Figure 10.46 Industry 4.0 in action.

Guide

  1. Cover
  2. Table of Contents
  3. Begin Reading

Pages

  1. iii
  2. iv
  3. v
  4. xi
  5. xiii
  6. xiv
  7. xv
  8. xvi
  9. xvii
  10. xix
  11. xx
  12. 1
  13. 2
  14. 3
  15. 4
  16. 5
  17. 6
  18. 7
  19. 9
  20. 10
  21. 11
  22. 12
  23. 13
  24. 14
  25. 15
  26. 16
  27. 17
  28. 18
  29. 19
  30. 20
  31. 21
  32. 22
  33. 23
  34. 24
  35. 25
  36. 26
  37. 27
  38. 28
  39. 29
  40. 30
  41. 31
  42. 32
  43. 33
  44. 34
  45. 35
  46. 36
  47. 37
  48. 38
  49. 39
  50. 40
  51. 41
  52. 42
  53. 43
  54. 44
  55. 45
  56. 46
  57. 47
  58. 48
  59. 49
  60. 50
  61. 51
  62. 52
  63. 53
  64. 54
  65. 55
  66. 56
  67. 57
  68. 58
  69. 59
  70. 60
  71. 61
  72. 62
  73. 63
  74. 64
  75. 65
  76. 66
  77. 67
  78. 68
  79. 69
  80. 70
  81. 71
  82. 72
  83. 73
  84. 74
  85. 75
  86. 76
  87. 77
  88. 78
  89. 79
  90. 80
  91. 81
  92. 82
  93. 83
  94. 84
  95. 85
  96. 86
  97. 87
  98. 88
  99. 89
  100. 90
  101. 91
  102. 92
  103. 93
  104. 94
  105. 95
  106. 96
  107. 97
  108. 98
  109. 99
  110. 100
  111. 101
  112. 102
  113. 103
  114. 104
  115. 105
  116. 106
  117. 107
  118. 108
  119. 109
  120. 110
  121. 111
  122. 112
  123. 113
  124. 114
  125. 115
  126. 116
  127. 117
  128. 118
  129. 119
  130. 120
  131. 121
  132. 122
  133. 123
  134. 124
  135. 125
  136. 126
  137. 127
  138. 128
  139. 129
  140. 130
  141. 131
  142. 132
  143. 133
  144. 134
  145. 135
  146. 136
  147. 137
  148. 138
  149. 139
  150. 140
  151. 141
  152. 142
  153. 143
  154. 144
  155. 145
  156. 146
  157. 147
  158. 148
  159. 149
  160. 150
  161. 151
  162. 152
  163. 153
  164. 154
  165. 155
  166. 156
  167. 157
  168. 158
  169. 159
  170. 160
  171. 161
  172. 163
  173. 164
  174. 165
  175. 166
  176. 167
  177. 168
  178. 169
  179. 170
  180. 171
  181. 172
  182. 173
  183. 174
  184. 175
  185. 176
  186. 177
  187. 178
  188. 179
  189. 180
  190. 181
  191. 182
  192. 183
  193. 184
  194. 185
  195. 186
  196. 187
  197. 188
  198. 189
  199. 190
  200. 191
  201. 192
  202. 193
  203. 194
  204. 195
  205. 196
  206. 197
  207. 198
  208. 199
  209. 200
  210. 201
  211. 202
  212. 203
  213. 204
  214. 205
  215. 206
  216. 207
  217. 208
  218. 209
  219. 210
  220. 211
  221. 212
  222. 213
  223. 214
  224. 215
  225. 216
  226. 217
  227. 218
  228. 219
  229. 220
  230. 221
  231. 222
  232. 223
  233. 224
  234. 225
  235. 226
  236. 227
  237. 228
  238. 229
  239. 230
  240. 231
  241. 232
  242. 233
  243. 234
  244. 235
  245. 236
  246. 237
  247. 238
  248. 239
  249. 240
  250. 241
  251. 242
  252. 243
  253. 244
  254. 245
  255. 246
  256. 247
  257. 248
  258. 249
  259. 250
  260. 251
  261. 252
  262. 253
  263. 254
  264. 255
  265. 256
  266. 257
  267. 258
  268. 259
  269. 260
  270. 261
  271. 262
  272. 263
  273. 264
  274. 265
  275. 266
  276. 267
  277. 268
  278. 269
  279. 270
  280. 271
  281. 272
  282. 273
  283. 274
  284. 275
  285. 276
  286. 277
  287. 278
  288. 279
  289. 280
  290. 281
  291. 282
  292. 283
  293. 284
  294. 285
  295. 286
  296. 287
  297. 288
  298. 289
  299. 290
  300. 291
  301. 292
  302. 293
  303. 294
  304. 295
  305. 296
  306. 297
  307. 298
  308. 299
  309. 300
  310. 301
  311. 302
  312. 303
  313. 304
  314. 305
  315. 306
  316. 307
  317. 308
  318. 309
  319. 310
  320. 311
  321. 312
  322. 313
  323. 314
  324. 315
  325. 316
  326. 317
  327. 318
  328. 319
  329. 320
  330. 321
  331. 322
  332. 323
  333. 324
  334. 325
  335. 326
  336. 327
  337. 328
  338. 329
  339. 330
  340. 331
  341. 332
  342. 333
  343. 334
  344. 335
  345. 336
  346. 337
  347. 338
  348. 339
  349. 341
  350. 342
  351. 343
  352. 344
  353. 345
  354. 346
  355. 347
  356. 348
  357. 349
  358. 350
  359. 351
  360. 352
  361. 353
  362. 354
  363. 355
  364. 357
  365. 358
  366. 359
  367. 360
  368. 361
  369. 362
  370. 363