ANSWERS AND EXPLANATIONS

Mathematical Reasoning

Chapter 1 Whole Numbers and Operations

Exercise 1: Operations with Whole Numbers

1. 1164

2. 284

3. 1009

4. 121.71

5. 3192

6. 4298

7. 13

8. 179,602

9. 10,501

10. 127.33

11. 786

12. 287

13. 2630

14. 405

15. 469

16. 1125

17. 4018

18. 3794

19. 738.17

20. 44,800

Exercise 2: Word Problems

Images

Chapter 2 Exponents, Roots, and Number Properties

Exercise 1: Exponents

1. 9

2. 1

3. 12

4. 343

5. 4

6. 1

7. images

8. images

9. images

10. 1

Exercise 2: Rules of Exponents

1. D

2. B

3. C

4. D

5. A

6. D

7. C

8. C

9. D

10. D

Exercise 3: Square Roots and Cube Roots

1. images

2. images

3. images

4. images

5. images

6. images

7. images

8. images

9. images

10. images

Exercise 4: Order of Operations

1. 3       8 ÷ 22 + 1 = 8 ÷ 4 + 1 = 2 + 1 = 3

2. 8      images

3. 31      4 + 2(8 + 6)–1 = 4 + 2(14) –1 = 4 + 28 –1 = 31

4. 3      3(6 – 5)3 = 3(1)3 = 3(1) = 3

5. 10      4 × 3 – 2 = 12 – 2 = 10

6. 22      3 –1 + 22 × 5 = 3 –1 + 4 × 5 = 3 –1 + 20 = 22

7. 64      (8 + 1 – 5)3 = (4)3 = 64

8. 2      (2 + 4) ÷ 2 –1 = 6 ÷ 2 –1 = 3 –1 = 2

9. 26      images

10. 36      16 + 4(3 + 2) = 16 + 4(5) = 16 + 20 = 36

Chapter 3 Decimal Numbers and Operations

Exercise 1: Comparing Decimals

1. 25.099 < 25.915

2. 0.108 > 0.0108

3. 0.00054 < 0.0019

4. 8.6 > 8.09

5. 0.40 = 0.4

6. 0.1053 > 0.0153

7. 2.00501 < 2.51

8. 0.133 < 1.33

9. 1.69401 > 1.694

10. 14.9 < 14.988

Exercise 2: Scientific Notation

1. 2.5 × 10–3

2. 7.836 × 109

3. 1.0 × 10–6

4. 6.05 × 10–1

5. 3.6 × 108

6. 0.0000000024

7. 130,000,000

8. 0.0408

9. 0.0009

10. 560,000

Exercise 3: Operations with Decimals

1. 30.13

2. 16.31

3. 3.03

4. 8.12

5. 223.40

6. 19.85

7. 1.02

8. 12.70

9. 80.70

10. 0.46

11. 37.50

12. 7.81

13. 31.45

14. 24.01

15. 130.00

16. 50.00

17. 42.80

18. 0.13

19. 1.80

20. 5.02

Chapter 4 Fractions and Operations

Exercise 1: Equivalent Fractions

1. images

2. images

3. images

4. images

5. images

6. images

7. images

8. images

9. images

10. images

Exercise 2: Converting Between Fractions and Decimals

1. 0.75

2. 0.40

3. 0.25

4. 0.21

5. 0.47

6. images

7. images

8. images

9. images

10. images

Exercise 3: Mixed Numbers

1. images

2. images

3. images

4. images

5. images

6. images

7. images

8. images

9. images

10. images

Exercise 4: Comparing Fractions

1. images

2. images

3. images

4. images

5. images

6. images

7. images

8. images

9. images

10. images

Exercise 5: Adding and Subtracting Fractions

1. images

2. images

3. images

4. images

5. images

6. images

7. images

8. images

9. images

10. images

Exercise 6: Multiplying and Dividing Fractions

1. images

2. images

3. images

4. images

5. images

6. images

7. images

8. images

9. images

10. images

Exercise 7: Operations with Fractions, Whole Numbers, and Mixed Numbers

1. images

2. images

3. images

4. images

5. images

6. images

7. images

8. images

9. images

10. images

Chapter 5 Ratios, Rates, and Proportions

Exercise 1: Ratios and Rates

1. C

2. A

3. E

4. images

5. images

6. images

7. images

8. 5:6      10:12 = 5:6

9. images

10. images

Exercise 2: Proportions

1. 9      8n = 72 ⇒ n = 72 ÷ 8 = 9

2. 10      15a = 150 ⇒ a = 150 ÷ 15 = 10

3. 16      5x = 80 ⇒ x = 80 ÷ 5 = 16

4. 18      9m = 162 ⇒ m = 162 ÷ 9 = 18

5. 4      8x = 32 ⇒ x = 32 ÷ 8 = 4

Exercise 3: Word Problems with Proportions

1. images

2. images

3. images

4. images

5. images

Chapter 6 Percents and Applications

Exercise 1: Converting Between Percents, Decimals, and Fractions

1. images

2. images

3. images

4. images

5. images

6. 4.4%

7. 90%

8. 0.1%

9. 37.5%       100 × (3 ÷ 8) = 37.5

10. 70%          100 × (7 ÷ 10) = 70

Exercise 2: Working with Percents

1. images

2. images

3. images

4. 150      0.6 × 250 = 150

5. 0.5      0.03 × 18 = 0.54

6. 0.5      0.005 × 90 = 0.45

7. 72      3.6 × 20 = 72

8. images

9. images

10. images

Exercise 3: Word Problems with Percents

1. $4.20      0.03 × 140

2. images

3. $5.82      (0.01 × 580.00) + 0.02 = 5.82

4. images

5. 12 minutos      0.4 × 30 = 12

Exercise 4: Simple Interest

1. images

2. images

3. $72      I = 900(0.04)(2) = 72

4. images

5. images

Chapter 7 The Number Line and Negative Numbers

Exercise 1: Adding and Subtracting Negative Numbers

1. 3

2. −6

3. −64

4. −23

5. −12

6. −4

7. 14

8. 5

9. 1

10. −22

Exercise 2: Multiplying and Dividing Negative Numbers

1. −24

2. 25

3. −10

4. −16

5. 18

6. −2

7. 3

8. −4

9. 2

10. −3

Chapter 8 Probability and Counting

Exercise 1: Basic Probability

1. images

2. images

3. images

4. images

5. images

Exercise 2: Compound Probability

1. images

2. images

3. images

4. images

5. images

Exercise 3: Combinations

1. 18      3 × 2 × 3

2. 30      10 × 3

3. images

4. 48      8 × 6

5. 288      3 × 2 × 2 × 4 × 3 × 2 × 1

Chapter 9 Statistics and Data Analysis

Exercise 1: Analyzing Data Sets

1. images

2. images

3. images

4. $372.00      690 − 318 = 372

5. images

Exercise 2: Bar Charts and Circle Graphs

1. March                80 + 90 = 170

2. 40

3. April

4. 135                      70 + 65 = 135

5. February            This month had the biggest height difference between the bars.

6. 324                      0.18(1800) = 324

7. Senior Associate I

8. 900                     0.5(1800) = 900

9. Images.

10. images

Exercise 3: Histograms and Dot Plots

1. 15                 total number of dots

2. 3

3. 7

4. Group 1

5. 60

6. 25%             Based on the plot, 60 is the third quartile.

7. 32                 2 + 6 + 8 + 10 + 6

8. 26                 2 + 6 + 8 + 10

9. Images

10. Images

Exercise 4: Relationships Between Data Sets

1. 40 miles      50 – 10 = 40

2. 3, 4, 5, and 6

3. 4400 calories         40 miles × 110 calories per mile = 4400

4. Images

5. B         The general trend is positive.

Chapter 10 Algebraic Expressions

Exercise 1: Evaluating Expressions

1. −40         5(−6) − 10 = −40

2. −20         16(−1) − 4 = −16 − 4 = −20

3. −9           9(0 − 1) = 9(−1) = −9

4. −29         −2(2)4 + 22 −1 = −2(16)+ 4 −1= −32 + 4 −1= −29

5. 12           32 + 5(3) − 12 = 9 + 15 − 12 = 12

6. 14           2(4 − 5)2 +3(4) = 2(−1)2 + 12 = 2 + 12 = 14

7. −28         −(3)3 − 1 = −(27)−1 = −27−1 = −28

8. −7         images

9. −5         images

10. images

Exercise 2: Combining Like Terms

1. 6x + 10

2. 17y – 4

3. –16z2

4. x + 4             −2(x −2) + x = −2x + 4 + x

5. 11y4 + 5          16y4 + 5(1 − y4)= 16y4 + 5 − 5y4

Exercise 3: Adding and Subtracting Polynomials

1. 2x2 − 3

2. x5 + 8

3. 2x2 − 7x + 6

4. x4x2 + x

5. 13x2 + 7x − 1

6. −14

7. x

8. −3x2 − 5x + 1

9. x2 −15x − 2

10. 4x3 −2x2 −3x

Exercise 4: Multiplying Polynomials (Single Terms)

1. 4x3

2. x6

3. 30x4

4. −3x2

5. 6xy2

Exercise 5: Multiplying Polynomials (Single Terms and Larger Terms)

1. −6x2 −54x

2. Images

3. x5 − 5x4x6

4. −5x4 −50x2

5. 4x7 − 4x5 + 24x4 − 36x3

Exercise 6: Multiplying Two Binomials

1. x2 + x − 2

2. 5x2 + 23x − 10

3. −8x2 + 10x − 2

4. x4 − 1

5. 2x3 − 9x2 − 12x + 54

Exercise 7: Multiplying Polynomials with More than Two Terms

1. x3 + 2x2 – 14x – 3

x3 + 5x2 + x − 3x2 −15x − 3 = x3 + 2x2 −14x −3

2. –2x3 – 3x2 + 7x + 4

−2x3 −2x2 + 8xx2x + 4 = −2x3 −3x2 + 7x + 4

3. 9x3 + 21x2 – 16x + 6

9x3 − 6x2 + 2x + 27x2 −18x + 6 = 9x3 + 21x2 − 16x + 6

4. x5x4 + x3x

x5 + x3 + x2x4x2x = x5x4 + x3x

5. x5 + 2x4x3 – 4x2 – 8x + 4

This is the result of distributing both terms. It can’t be simplified further.

Exercise 8: Factoring Using the Greatest Common Factor

1. 3(x2 + 3)

2. 4x2 (x − 4)

3. 9(2x +1)

4. x(x4x −2)

5. 2x2 (5x + 7)

Exercise 9: Factoring by Reversing FOIL

1. (x − 3)(x − 4)

2. (x −2)(x + 1)

3. (x − 6)(x + 3)

4. (x −10)(x + 4)

5. (x −2)(x −3)

Exercise 10: Difference of Squares

1. (x + 1)(x − 1)

2. (x + 2)(x − 2)

3. (x + 9)(x − 9)

4. (x + 6)(x − 6)

5. (x + 3)(x − 3)

Exercise 11: Simplifying Rational Expressions

1. Images

2. Images

3. Images

4. Images

5. Images

Exercise 12: Adding and Subtracting Rational Expressions

1. Images

2. Images

3. Images

4. Images

5. Images

6. Images

7. Images

8. Images

9. Images

10. Images

Exercise 13: Multiplying and Dividing Rational Expressions

1. Images

2. Images

3. Images

4. Images

5. Images

6. Images

7. Images

8. Images

9. Images

10. Images

Exercise 14: Writing Expressions

1. images

2. x + 505

3. y + 6

4. 0.15m + 30

5. Images

Chapter 11 Solving Equations and Inequalities

Exercise 1: One-Step Equations

1. images

2. x = 5

3. x = 20

4. x = 17

5. x = −4

Exercise 2: Two-Step Equations

1. x = 8

2. x = 12

3. x = 4

4. x = −16

5. Images

Exercise 3: Multiple-Step Equations

1. images

2. images

3. images

4. images

5. images

Exercise 4: Solving Inequalities

1. x > 5

2. x < 14

3. x < 6

4. x ≥ 1

5. x ≤ −24

Exercise 5: Writing Linear Equations and Inequalities

1. x = 2y − 3

2. G ≥ 90

3. x > 6            x >(2)(3)

4. m ≥ 305       m≥ 300 + 5

5. w = r − 34

Exercise 6: Word Problems with Equations and Inequalities

1. 120        125 + 0.14m = 141.80

2. −12        x − 10 = 2x + 2

3. Images

4. Images

5. 11          6 + 2w = 28

Exercise 7: Solving Systems of Equations

1. x = −1, y = 1

2. x = 4, y = 4

3. x = 0, y = 2

4. x = 1, y = 6

5. x = 2, y = −2

Exercise 8: Word Problems and Systems of Equations

1. 40 n + d = 61

0.05n + 0.10d = 4.10

2. 8   10f + 15a = 260

f + a = 20

3. 20 m + b = 40

1.5m + 2b = 70

4. 5   c + 1.5t = 14

1.5c + 2t = 19.5

5. 10 95g + 12s = 1022

6g + 3s = 78

Exercise 9: Solving Quadratic Equations with the Square Root Rule

1. Images

2. x = 9, –9

3. x = 4, –4

4. Images

5. x = 0, –4

Exercise 10: Solving Quadratic Equations by Factoring

1. x = 4, –1            (x − 4)(x + 1) = 0

2. x = 2, 3              (x − 2)(x − 3)= 0

3. x = –2, –1          (x + 2)(x + 1) = 0

4. x = 3, 6              x2 − 9x + 18 = (x − 6)(x − 3) = 0

5. x = –4, 1            x2 + 3x − 4 = (x + 4)(x − 1) = 0

Exercise 11: Solving with the Quadratic Formula

1. Images

2. Images

3. Images

4. Images

5. Images

Chapter 12 Graphing Equations

Exercise 1: Plotting Points

Images

Exercise 2: Graphing Lines

1. Images

2. Images

3. Images

4. Images

5. Images

Exercise 3: Intercepts

1. x intercept images, y intercept −2

2. x intercept −5, y intercept 5

3. x intercept images, y intercept −10

4. x intercept 5, y intercept −15

5. x intercept 2, y intercept 2

Exercise 4: Slope

1. Images

2. Images

3. Images

4. Images

5. Images

6. Images

7. 2             y = 2x + 2 and any line parallel will have the same slope.

8. Images

9. Images

10. Jackson Manufacturing

Jackson Manufacturing is producing 150 per hour based on the slope.

Exercise 5: Finding the Equation of a Line

1. y = −5x + 8

2. Images

3. y = 2x − 6

4. y = 3x − 1

5. (a) y = 4x + 2

Images

Chapter 13 Functions

Exercise 1: Evaluating Functions

1. 22       5(4) + 2 = 20 + 2 = 22

2. −28     5(−6) + 2 = −30 + 2 = −28

3. 3         2(0)2 − 0 + 3 = 2(0) + 3 = 3

4. 6         2(−1)2 − (−1) + 3 = 2(1) + 1 + 3 = 2 + 1 + 3 = 6

5. 9         2(2)2 − 2 + 3 = 2(4) − 2 + 3 = 8 − 2 + 3 = 9

Exercise 2: Recognizing Functions

1. function

2. not a function

3. function

4. function

5. not a function

Exercise 3: Intercepts

1. x intercept: 2, y intercept: 6

2. x intercept: −1, 5, 10; y intercept: 4

3. x intercept: 0; y intercept: 0

4. x intercept: −5, 1; y intercept: 3

5. x intercept: −2; y intercept: 8

Exercise 4: Other Properties of Functions

1. x smaller than −4, x between −1 and 1, and x larger than 4

2. x between −4 and −1 and x between 1 and 4

3. relative minimums at x = −3 and x = 3

4. relative maximum when x = 0

5. The function is increasing when x is between −3 and 0 and when x is larger than 3.

6. The function is decreasing when x is smaller than −3 and when x is between 0 and 3.

7. As x gets very large, f (x) also gets large.

8. As x gets very negative, f (x) gets very large.

9. 4

10. Images

Chapter 14 Geometry

Exercise 1: Area and Perimeter of Polygons

1. 36 feet                                    9 + 12 + 15

2. Area: 64 square inches         8 × 8

Perimeter: 32 inches             8 + 8 + 8 + 8

3. Area: 32 square meters       16 × 2

Perimeter: 36 meters           16 + 16 + 2 + 2

4. x = 5                                      8x = 40

5. 12                                          3x = 36

Exercise 2: Circles

1. 50.3 square feet                   π42 = 16π

2. 25.1 feet                               2π(4) = 8π

3. 125.7 meters                        radius is 20 m; 2π(20) = 40π

4. Images

5. Images

Exercise 3: Volume and Surface Area of 3-Dimensional Objects

1. images

2. 3 feet

SA = 2ab + 2bc + 2ac

216 = 2(6)x + 2x(10) + 2(6)(10)

216 = 12x + 20x + 120

216 = 32x + 120

96 = 32x

x = 3

3. Images

4. images

5. images

Exercise 4: Complex Figures

1. 1400 meters                         300 + 300 + 200 + 100 + 100 + 400

2. 100,000 square meters        (300 × 300) + (100 × 100)

3. 100 meters

4. 30 cubic mm         (2 × 3 × 2) + (3 × 2 × 3)

5. 62 square mm

Surface Area of smaller rectangular prism: (2 × 3) + 2(2 × 2) + 2(2 × 3) = 26

Surface Area of larger rectangular prism: 2(3 × 2) + (1 × 3) + (3 × 3) + 2 (3 × 2) = 36

Total SA: 26 + 36 = 62

Exercise 5: The Pythagorean Theorem

1. images

2. images

3. images

4. images

5. 24                        To find the perimeter, you must first find the length of the remaining leg.

Images