CONTENTS
Cover
Title page
Copyright page
Dedication page
Acknowledgments
Contributors List
1 Introduction
1.1 Background
1.2 Ultra-High Temperature Ceramics
1.3 Description of Contents
References
2 A Historical Perspective on Research Related to Ultra-High Temperature Ceramics
2.1 Ultra-High Temperature Ceramics
2.2 Historic Research
2.3 Initial NASA Studies
2.4 Research Funded by the Air Force Materials Laboratory
2.5 Summary
Acknowledgments
References
3 Reactive Processes for Diboride-Based Ultra-High Temperature Ceramics
3.1 Introduction
3.2 Reactive Processes for the Synthesis of Diboride Powders
3.3 Reactive Processes for Oxygen Removing during Sintering
3.4 Reactive Sintering Processes
3.5 Summary
References
4 First-Principles Investigation on the Chemical Bonding and Intrinsic Elastic Properties of Transition Metal Diborides TMB2 (TM=Zr, Hf, Nb, Ta, and Y)
4.1 Introduction
4.2 Calculation Methods
4.3 Results and Discussion
4.4 Conclusion Remarks
Acknowledgment
References
5 Near-Net-Shaping of Ultra-High Temperature Ceramics
5.1 Introduction
5.2 Understanding Colloidal Systems: Interparticle Forces
5.3 Near-Net-Shape Colloidal Processing Techniques
5.4 Summary, Recommendations, and Path Forward
Acknowledgments
References
6 Sintering and Densification Mechanisms of Ultra-High Temperature Ceramics
6.1 Introduction
6.2 MB
2
with Metals
6.3 MB
2
with Nitrides
6.4 MB
2
with Metal Disilicides
6.5 MB
2
with Carbon or Carbides
6.6 MB
2
with SiC
6.7 MB
2
–SiC Composites with Third Phases
6.8 Effects of Sintering Aids on High-Temperature Stability
6.9 Transition Metal Carbides
6.10 Conclusions
Acknowledgments
References
7 UHTC Composites for Hypersonic Applications
7.1 Introduction
7.2 Preparation of Continuous-Fiber-Reinforced UHTC Composites
7.3 UHTC Coatings
7.4 Short-Fiber-Reinforced UHTC Composites
7.5 Hybrid UHTC Composites
7.6 Summary and Future Prospects
References
8 Mechanical Properties of Zirconium-Diboride Based UHTCs
8.1 Introduction
8.2 Room Temperature Mechanical Properties
8.3 Elevated-Temperature Mechanical Properties
8.4 Concluding Remarks
References
9 Thermal Conductivity of ZrB
2
and HfB
2
9.1 Introduction
9.2 Conductivity of ZrB
2
and HfB
2
9.3 ZrB
2
and HfB
2
Composites
9.4 Electron and Phonon Contributions to Thermal Conductivity
9.5 Concluding Remarks
References
10 Deformation and Hardness of UHTCs as a Function of Temperature
10.1 Introduction
10.2 Elastic Properties
10.3 Hardness
10.4 Hardness and Yield Strength
10.5 Deformation Mechanism Maps
10.6 Lattice Resistance to Dislocation Glide
10.7 Dislocation Glide Controlled by Other Obstacles
10.8 Deformation by Creep
10.9 Deformation of Carbides versus Borides
10.10 Conclusions
References
11 Modeling and Evaluating the Environmental Degradation of UHTCs under Hypersonic Flow
11.1 Introduction
11.2 Oxidation Modeling
11.3 UHTC Behavior under Simulated Hypersonic Conditions
11.4 Comparing Model Predictions to Leading-Edge Behavior
11.5 Behavior of UHTCs under Other Test Methods
11.6 Summary
References
12 Tantalum Carbides: Their Microstructures and Deformation Behavior
12.1 Crystallography of Tantalum Carbides
12.2 Microstructures of Tantalum Carbides
12.3 Mechanical Properties of Tantalum Carbides
12.4 Summary
Acknowledgments
References
13 Titanium Diboride
13.1 Introduction
13.2 Phase Diagram, Crystal Structure, and Bonding
13.3 Synthesis of Titanium Diboride Powders
13.4 Densification of Transition Metal Borides
13.5 Mechanical Properties at Ambient and Elevated Temperatures
13.6 Physical Properties and Oxidation Resistance
13.7 Oxidation Resistance
13.8 Tribological Properties
13.9 Applications of TiB
2
13.10 Conclusions
References
14 The Group IV Carbides and Nitrides
14.1 Background
14.2 Group IV Carbides
14.3 Preparation and Processing
14.4 Mechanical and Physical Properties
14.5 Oxidation of the UHTC Carbides and Nitrides
14.6 Oxidation of the UHTC Carbides
14.7 UHTC Nitrides
14.8 Preparation, Diffusion, and Phase Formation
14.9 Mechanical and Physical Properties
14.10 Oxidation of Nitrides
14.11 Conclusions and Future Research
Acknowledgments
References
15 Nuclear Applications for Ultra-High Temperature Ceramics and MAX Phases
15.1 Future Nuclear Reactors
15.2 Current Nuclear Ceramics
15.3 Future Nuclear Ceramics
15.4 Non-Oxide Nuclear Fuels
15.5 Other Possible Future Fission and Fusion Applications
15.6 Thermodynamics of Nuclear Systems
15.7 Conclusions
References
16 UHTC-Based Hot Structures
16.1 Introduction
16.2 TPS: Test Articles and Prototypes
16.3 Plasma Tests of Nose Test Articles
16.4 Expert Project: Computational Fluid Dynamics Computations and Plasma Tests
16.5 In-Fling Testing of the Capsule “SHARK”
16.6 Future Work
References
Index
End User License Agreement
List of Tables
Chapter 02
Table 2.1. Selected recommendations for future research and development activities related to UHTCs from Reference [10]
Table 2.2. Compositions examined in the second series of studies by ManLabs [54]
Table 2.3. Summary of compositions studied for the third series of ManLabs projects
Chapter 03
Table 3.1. Thermodynamics of the main reactions including the temperatures at which the reactions become favorable at standard state and under mild vacuum
Chapter 04
Table 4.1. Lattice constants and bond lengths of TMB
2
Table 4.2. Second-order elastic constants (
c
ij
) and bulk modulus B, Young's modulus E, shear modulus G of TMB
2
(TM = Y, Zr, Hf, Nb, and Ta)
Chapter 05
Table 5.1 Influence of surface forces on suspension behavior
Table 5.2 Isoelectric point (IEP) of most commonly used UHTCs and other relevant powders
Chapter 06
Table 6.1. Sintering agents and corresponding hot pressing temperature ranges (
T
MAX
) for ZrB
2
and HfB
2
Table 6.2. MB
2
–MeSi
2
composites reached specific final relative density (rd) using different amounts of MeSi
2
, sintering techniques (Tech), and peak temperatures (
T
MAX
)
Table 6.3. ZrB
2
–SiC
W
and ZrB
2
–SiC
F
composites (W: whisker, F: fiber) sintered by hot pressing (HP) using different sintering aids (s.a): peak temperature (
T
MAX
), and final relative density (rd)
Table 6.4. ZrB
2
–
x
SiC
P
composites (P: particulates) densified by HP, SPS, or PS using different sintering aids (s.a): peak temperature (
T
MAX
), and final relative density (rd)
Table 6.5. Literature overview of sintering techniques (Tech), parameters, and additives adopted for sintering of MC-composites
Chapter 08
Table 8.1. Elastic modulus, Vickers hardness, fracture toughness by direct crack method, and four-point flexure strength of ZrB
2
ceramics with and without sintering additives
Table 8.2. Summary of various fitted models of elastic modulus as a function of porosity for ZrB
2
Table 8.3. Elastic modulus, Vickers hardness, fracture toughness by direct crack method, and four-point flexure strength of ZrB
2
–SiC ceramics
Table 8.4. Elastic modulus, Vickers hardness, fracture toughness by direct crack method, and four-point flexure strength of ZrB
2
–SiC ceramics with various additives
Table 8.5. Elastic modulus, Vickers hardness, fracture toughness by direct crack method, and four-point flexure strength of ZrB
2
–(Zr, Mo, Ta)Si
2
ceramics
Chapter 09
Table 9.1. Thermal conductivity of pure ZrB
2
with information on starting/final materials, processing, and density.
Table 9.2. Summary of solid solution effects on thermal conductivity of ZrB
2
Table 9.3. Thermal conductivity of pure HfB
2
with information on starting/final materials, processing, and density
Table 9.4. Thermal conductivity of ZrB
2
-SiC with information on starting/final materials, processing, and density
Table 9.5. Thermal conductivity of two-phase ZrB
2
-based composites with information on starting/final materials, processing, and density
Table 9.6. Thermal conductivity of three- and 4-phase ZrB
2
-based composites with information on starting/final materials, processing, and density
Table 9.7. Thermal conductivity of HfB
2
–SiC with information on starting/final materials, processing, and density
Table 9.8. Thermal conductivity of HfB
2
-based composites with information on starting/final materials, processing, and density
Chapter 10
Table 10.1. Elastic constants (
C
11
,
C
12
, and
C
44
) and elastic properties of UHTC carbides with the cubic rock salt structure (NaCl, Fm-3 m), with
K
as the bulk modulus and
E
avg
the average Young's modulus over all orientations
Table 10.2. Elastic constants (
C
11
,
C
12
, and
C
44
) and elastic properties of UHTC nitrides with the cubic rock salt structure (NaCl, Fm-3 m), with
K
as the bulk modulus and
E
avg
the average Young's modulus over all orientations
Table 10.3. Elastic constants and elastic properties of UHTC borides with the hexagonal structure (P6/mmm), with
K
as the bulk modulus and
E
avg
the average Young's modulus over all orientations
Table 10.4. Rate of decay of the elastic modulus with temperature
Table 10.5. Average shear modulus (
G
), Peierls stress (
τ
p
), activation energy (
Q
), slip planes, and Burgers vector (
b
) for UHTCs
Table 10.6. Parameters used to construct the deformation mechanism maps. Parameters for ZrB
2
from Ref. [63] and for ZrC from Ref. [62]. Where the treatment deviates from Ashby and Frost, parameters were adapted to get coincidence of the maps.
Chapter 12
Table 12.1. Experimentally determined elastic constants of polycrystalline TaC
Table 12.2. Cubic elastic constants and lattice constants of TaC single crystals obtained from experiments and simulation
Chapter 13
Table 13.1. Basic physical, mechanical, and oxidation properties of TiB
2
, as well as the other popular Ultra-High-temperature transition metal borides [1–4]
Table 13.2. Summary of densification, microstructure, and mechanical properties of TiB
2
and other transition metal borides
Table 13.3. Summary of variation of hardness with respect to temperature for TiB
2
-based ceramics with different compositions and processing conditions
Table 13.4. The effects of temperature on strength of TiB
2
and other transition metal diborides [4-point (4-P) and 3-point (3-P) flexural strength]
Table 13.5. Summary of thermal conductivity as a function of temperature for TiB
2
ceramics
Chapter 14
Table 14.1. Materials with melting temperatures above 3000°C
Table 14.2. Selected eutectic temperatures (°C)
Chapter 15
Table 15.1. The GIF reactor designs
Table 15.2. Typical properties of some current nuclear ceramics
Table 15.3. Typical properties of UHTCs
Table 15.4. Typical properties of MAX phases
Table 15.5. Properties of carbide and nitride fuels
Chapter 16
Table 16.1. Thermomechanical and physical properties of ZrB
2
+ 15 vol% SiC + 2 vol% MoSi
2
(ZS) and ZrB
2
+ 10 vol% HfB
2
+ 15 vol% SiC + 2 vol% MoSi
2
(ZHS) formulations [45]
Table 16.2. Ceramic formulations and related densification processes: hot-pressing (HP) and pressureless sintering (PLS)
Table 16.3. Thermomechanical properties of massive Si
3
N
4
+ 35 vol% MoSi
2
+ 2.5 Y
2
O
3
+ 1 Al
2
O
3
(RAY2535)
Table 16.4. Thermomechanical properties of massive ZrB
2
+ 15 vol% SiC + 10 vol% LaB
6
[59]
Table 16.5. Experimental flow conditions during plasma test on the qualification model EXPERT PL15
List of Illustrations
Chapter 01
Figure 1.1. Materials with the highest reported melting temperature grouped by material family.
Chapter 02
Figure 2.1. Summary of types of thermal protection systems as a function of heat flux and exposure time from Reference [10].
Figure 2.2. Strength as a function of temperature for several engineering materials along with a clearly defined Ultra-High temperature regime from Reference [20].
Figure 2.3. Notional temperature requirements for orbital reentry vehicles based on projected wing loading and hypersonic lift-to-drag (L/D) ratio from Reference [41].
Figure 2.4. Trajectories and methods for dealing with heat loads from Reference [41].
Figure 2.5. Comparison of kinetic rate constants for the oxidation of ZrB
2
and HfB
2
as a function of temperature [45].
Figure 2.6. Relative density as a function of sintering time for ZrB
2
with different B/Me ratios [53].
Figure 2.7. Analysis of densification behavior of ZrB
2
(B/Me ratio = 1.89) as a function of densification temperature where t is sintering time and GS is grain size [53].
Figure 2.8. Oxide-scale thickness as a function of oxidation temperature for HfB
2
, SiC, and HfB
2
containing 20 vol% SiC based on data from Reference [55].
Figure 2.9. Strength as a function of temperature for nominally pure ZrB
2
(Material I) [56].
Figure 2.10. Strength as a function of SiC content in composition IV (HfB
2
–SiC) [56].
Figure 2.11. Thermal conductivity of composition I (nominally pure ZrB
2
) as a function of temperature using two methods, cut bar for temperatures below 1000°C and thermal flash for temperature above 1000°C. The materials were nominally fully dense with a grain size of ~20 µm [57].
Figure 2.12. Schematic of the system built for cold gas/hot wall testing at high gas velocities. The system consisted of an induction heater and high-velocity gas-handling unit [58].
Figure 2.13. Schematic of the 10 MW Arc Splash Facility at AVCO [59].
Figure 2.14. Summary of the results of furnace kinetic studies based on the recession of the parent material after 2 h. HfB
2
is always marginally better than the corresponding ZrB
2
composition. Carbides are not good at “moderate temperature, but extend temperature to higher values. JTA = graphite grade with ZrB
2
and Si additions. KT-SiC = Si-rich SiC (9 vol% free Si). SiO
2
+ W = SiO
2
+ 60 wt% W. JTO992 is C–HfC–SiC and JTO981 is C–ZrC–SiC [60].
Figure 2.15. Schematic description of the temperature gradients observed across the oxide scales for specimens tested in (left) an arc plasma facility that uses hot gas, cold way, and high velocity; (center) conventional tube furnace with low velocity flow; and (right) inductively heated specimen in cold gas/hot wall/high velocity [61].
Figure 2.16. Schematic with information about a model trajectory for a lifting body reentry vehicle showing stagnation pressure and enthalpy along with other information for a vehicle with a 3-in. leading-edge radius [61].
Figure 2.17. Comparison of measured recession rates (points) as a function of heat flux and total enthalpy. Lines are shown for a calculated surface temperature of 6100°F (3300°C) under two different conditions. The plot also includes a line (– - –) showing the speed and altitude of a potential reentry trajectory [62].
Figure 2.18. Schematic of the Pirani furnace used for melting point determinations [64].
Figure 2.19. Comparison of melting temperature as a function of composition in the HfC–TaC system for data from Rudy [64] and Agte [65].
Figure 2.20. Lattice parameter as a function of Ta to Ti ratio and carbon content for the TiC–TaC system [66].
Figure 2.21. Liquidus project for the Zr–B–C ternary phase diagram [66].
Chapter 03
Figure 3.1. The life cycle of diboride-based ceramics.
Figure 3.2. Roadmap of the fabrication process of MeB
2
discussed in this chapter.
Figure 3.3. Standard free energy of reactions as a function of temperature [4].
Figure 3.4. TEM image of the submicrometer ZrB
2
powder by RWR [10].
Figure 3.5. Calculated vapor pressure of B
2
O
3
as a function of temperature in the pressure range maintained in the sintering furnace [15].
Figure 3.6. Molar content of the products calculated by reactions between 3 mole MeC and 1 mole ZrO
2
as a function of the temperature at a vacuum level of 5 Pa: (a) WC, (b) VC, (c) NbC, (d) TiC,(e) TaC, and (f) HfC [28].
Figure 3.7. SEM images of indentation crack propagation in ZrB
2
–SiC–WC ceramics by Zou et al. [29]
Figure 3.8. (a) The flexural strength of ZrB
2
–SiC (ZS), ZrB
2
–SiC–WC (ZSW), and ZrB
2
–SiC–ZrC (ZSZ) as a function of testing temperature, (b) the load–displacement curves for ZS, ZSW, and ZSZ at 1600°C [35].
Figure 3.9. Microstructure formation mechanism of the ZrB
2
–SiC composite in the reaction-synthesis process, depicting the transformation from (a) the powder compact to (b) the final microstructure of the composite [36].
Figure 3.10. Microstructure formation mechanism of ZrB
2
–ZrC–SiC composites in the reaction-synthesis process, depicting conversion from (a) the powder compact to (b) the intermediate state, and (c) the final microstructure [37].
Figure 3.11. Backscattered electron images of the cross section of a typical ZrB
2
-platelet-reinforced ZrC product taken approximately 2 mm from the top (a) and bottom (b) of a 12.7-mm-thick part. The darkest phase is ZrB
2
, the gray phase is ZrC, and the lightest phase is zirconium metal [54].
Figure 3.12. ZrB
2
JCPDS 35-0741 reference (a) and XRD patterns of cross section (b) and sintered surface (c) surface of the PECS samples [43].
Figure 3.13. (a and b) TEM image of ZrB
2
platelet grains at different magnifications; (c) selected-area electron diffraction pattern of platelet grains of (b); (d and e) SEM images of polished surfaces before and after hot forging; (f and g) SEM images of fractured surface before and after hot forging [62].
Chapter 04
Figure 4.1. Crystal structure of TMB
2.
Figure 4.2. Pressure dependence of lattice constants
a
and
c
of TMB
2.
Figure 4.3. Pressure dependence of TM–B and B–B bond lengths.
Figure 4.4. Electron density difference maps on planes parallel to (0001) that are across Zr (a) and B (b) atoms, and on (11
2
0) that is across both Zr and B atoms (c).
Figure 4.5. Band structure of TMB
2
: (a) YB
2
, (b) ZrB
2
, (c) HfB
2
, (d) NbB
2
, and (e) TaB
2
.
Figure 4.6. (a) Total and projected electronic density of states of YB
2
, and decomposed charge density on (11
2
0) plane in the energy range from −10.6 to −7.1 eV (b), from −6.6 to −2.0 eV (c), from −4.3 to 0.45 eV (d), from −2.3 to 0.45 eV (e), and from −0.99 to 2.0 eV (f).
Figure 4.7. (a) Total and projected electronic density of states of ZrB
2
, and decomposed charge density on (11
2
0) plane in the energy range from −12.7 to −7.8 eV (b), from −8.7 to −3.1 eV (c), from −6.8 to −1.1 eV (d), from −4.1 to −1.1 eV (e), and from −2.7 to 0.6 eV (f), and from −0.03 to 4.0 eV (g).
Figure 4.8. (a) Total and projected electronic density of states of HfB
2
, and decomposed charge density on (11
2
0) plane in the energy range from −13.7 to −9.5 eV (b), from −9.4 to −4.1 eV (c), from −7.7 to −1.4 eV (d), from −4.8 to −1.4 eV (e), from −3.4 to 1.7 eV (f), and from −0.07 to 4.2 eV (g).
Figure 4.9. (a) Total and projected electronic density of states of NbB
2
, and decomposed charge density on (11
2
0) plane in the energy range from −14.1 to −10.0 eV (b), from −9.8 to −4.7 eV (c), from −7.7 to −2.4 eV (d), from −5.5 to −2.4 eV (e), from −4.4 to −1.2 eV (f), from −1.6 to 1.9 eV (g), from −0.7 to 3.5 eV (h), and from −0.6 to 3.8 eV (i).
Figure 4.10. (a) Total and projected electronic density of states of TaB
2
, and decomposed charge density on (11
2
0) plane in the energy range from −14.9 to −10.7 eV (b), from −10.5 to −5.3 eV (c), from −8.3 to −2.5 eV (d), from −6.1 to −2.5 eV (e), from −4.8 to −1.3 eV (f), from −1.7 to 2.1 eV (g), from −0.8 to 3.7 eV (h), and from −0.6 to 4.0 eV (i).
Chapter 05
Figure 5.1. Representation of the repulsion and attraction forces as a function of interparticle distance. (a) When ceramic particles are suspended in a polar solvent, particle surfaces become charged depending on the chemistry and pH of the solution. M–OH groups represent surface hydroxyl group that reacts with acid or base. (b) The surface charge is balanced with a counterion cloud around the particle to provide electrical neutrality. Surface charge and the counterion cloud form the electrical double layer. (c) In addition to using the EDL to create repulsive forces between particles, steric and electrosteric mechanisms could be used by adding polymers or polyelectrolytes, respectively, which will adsorb on particle surfaces.
Figure 5.2. Schematic representation of the influence of volume fraction on the viscosity of suspensions as a function of shear rate. At low shear rate, Brownian motion dominates producing high-viscosity randomized structures. At high shear rates, particles line up in preferred flow structures and viscosity decreases.
Figure 5.3. Volume fraction of consolidated green body as a function of applied pressure for a well-dispersed suspension and attractive particle networks.
Figure 5.4. Classification of green near-net-shaping ceramic processing techniques.
Figure 5.5. Dry processing route to prepare UHTC components. The main challenge associated with current technology for preparing UHTCs is the need for high temperature and pressure to densify the materials. This leads to the use of sintering aids, which reduces the service performance and limits shapes to very simple geometries.
Figure 5.6. Colloidal processing route to prepare UHTC components. In addition to removing flaws related to powder aggregates and improvement in the homogeneity of the sample, the control of the interparticle forces leads to higher particle packing that reduces the temperature for sintering and the need of pressure. In addition, near-net-shaping allows the manufacturing of UHTC complex shapes.
Figure 5.7. Examples of colloidal shaping techniques. (a) Slip casting: the control of suspension rheology determines particle packing; the green body is formed by the removal of solvent by filtration; (b) Gelcasting: the green body strength is determined by the amount of monomer, crosslinker, initiator (and catalyst), and the solid content of the suspension; (c) Freeze casting: the green body microstructure is designed through control of ice growth, which is controlled by solid content, freezing temperature, freezing device, and cyoprotector addition.
Figure 5.8. Viscosity versus shear rate curves for ZrB
2
suspensions prepared with different amounts of dispersant. The dispersant is Hypermer A70 and the solvent is cyclohexane. The volume fraction of solids is 50%.
Figure 5.9. Sintered density of ZrB
2
specimens as a function of processing route and sintering temperature. Densities of the green bodies for colloidal and dry processing routes were included as dashed horizontal lines for comparison.
Figure 5.10. Microstructure of ZrB
2
after sintering at 2100°C/1 h at different magnifications. (a and b) Colloidal processing and PS; (c and d) dry processing and PS; (e and f) colloidal processing and HP; (g and h) dry pressing and HP.
Figure 5.11. Shrinkage for ZrB
2
samples as a function of the processing route and type and temperature of sintering. (The linear shrinkage for PS samples showed in the graph represents the average of height and diameter of the samples tested; in the case of the HP samples, the linear shrinkage represents the average of their height only, since the diameter is constrained by die dimension.)
Figure 5.12. ZrB
2
Leading edge. (a) Green body produced by slip casting as-unmolded; (b) after pressureless sintering at 2100°C/1 h; (c) after oxytorch testing.
Chapter 06
Figure 6.1. Relative density (rd) versus temperature (T) of ZrB
2
-based compositions using 5 vol% Si
3
N
4
/ or AlN, as sintering aid; onset temperatures and final relative densities are also reported on each curve.
Figure 6.2. ZrB
2
ceramic sintered using 5 vol% Si
3
N
4
as sintering aid: (a) SEM micrograph showing ZrB
2
(1), ZrO
2
(2), and BN (3), (b) high-resolution TEM micrograph of a grain-boundary phase.
Figure 6.3. Relative density (rd) versus temperature (T) of ZrB
2
sintered with 15 vol% of ZrSi
2
, MoSi
2
, or WSi
2
; onset temperatures and final relative densities are also reported on each curve.
Figure 6.4. Examples of microstructures of MB
2
–MeSi
2
composites: SEM micrographs showing (a) ZrB
2
–MoSi
2
, (b) ZrB
2
–WSi
2
, and (c) HfB
2
–ZrSi
2
(d) high-resolution TEM image of the interface between core and rim in ZrB
2
–TaSi
2
[41] and (e) the same interface showing low angle grain boundaries [41].
Figure 6.5. Isobaric multiphase equilibrium amount (kmol) versus temperature (
T
) calculated using HSC Chemistry v.6.1, 1 bar (a and b) or 1 mbar (c and d) of total equilibrium pressure; starting compositions (in kmol): 0.9 ZrO
2
+ 0.8 B
2
O
3
(a and c), 0.9 ZrO
2
+ 0.8 B
2
O
3
+ 1.2 SiC + 0.05 SiO
2
(b and d).
Figure 6.6. Hot pressing of ZrB
2
-based compositions (ZS
x
) with varying SiC particulate content (
x
, vol%), compared to an only milled ZrB
2
powder (Z0): relative density (rd) versus temperature (
T
). Onset temperatures are indicated for each system.
Figure 6.7. Polished section of a hot-pressed ZrB
2
–20% SiC: ZrB
2
- (1), SiC- (2), ZrO
2
- (3) and SiO
2
-based glassy pockets (4).
Figure 6.8. Polished sections from hot-pressed ZrB
2
-based ceramics with 5 vol% (a) and 20 vol% SiC particulates (b).
Figure 6.9. (a) Relative density (rd) versus temperature (
T
) of ZrB
2
+ 15 vol% SiC with (ZS15M), or without MoSi
2
(ZS15): onset temperatures are indicated. Polished sections by SEM from hot-pressed ZS15 (b) and ZS15M (c) are shown.
Figure 6.10. Isobaric multiphase equilibrium amount (kmol) versus temperature (
T
) calculated using HSC Chemistry v.6.1, 1 mbar (a) or 1 bar (b) of total equilibrium pressure, and 0.9 ZrO
2
+ 0.8 B
2
O
3
+ 1.2 SiC + 0.4 B
4
C + 0.05 SiO
2
of starting composition (in kmol).
Figure 6.11. Relative density (rd) of ZrB
2
–15SiC–
x
WC composition (vol%) using high-energy milled (
x
= 2 for ZSWC–HM up to
T
1 MAX
= 1900°C) or only mixed ZrB
2
(
x
= 5 for ZSWC up to
T
2 MAX
= 1930°C): (a) rd versus temperature (
T
), (b) rd versus time (
t
) at
T
1 MAX
and
T
2 MAX
. For ZSWC, uniaxial pressure was applied at the constant value of 30 MPa from RT, while in three steps for ZSWC–HM.
Figure 6.12. Polished regions by SEM of hot-pressed ZrB
2
–15SiC–2WC composite (see ZSWC–HM in Fig. 6.11): (a) overall microstructure with ZrB
2
(1), SiC (2), (W,Zr)B (3) and (b) magnification of ZrB
2
cores (C) and (Zr,W)B
2
rim (R).
Figure 6.13. Strength (
σ
) versus displacement (
x
) curves recorded during 4-pt flexure test at 1500°C in air using different ceramics sintered by hot pressing (HP) or pressureless sintering (PS): (a) HfB
2
–15 vol% TaSi
2
(HF15Ta–HP), HfB
2
–15 vol% MoSi
2
(HF15Mo–HP), ZrB
2
–20 vol% MoSi
2
(Z20Mo–PS); (b) ZrB
2
–15 vol% SiC (ZS15) with B
4
C, WC, or MoSi
2
as sinter additive.
Figure 6.14. ZrB
2
-based composites hot-pressed with different MeSi
2
(Me = Mo, Ta, W, Zr): average flexural strength data (
σ
) measured at different temperatures (
T
). (a) MeSi
2
< 5 vol% [13, 15, 33, 57, 80], (b) MeSi
2
> 10 vol% [17, 19, 32]. For the sake of comparison, the composite containing SiC and B
4
C is also reported, as one of the most refractory compositions.
Figure 6.15. Relative density (rd) versus temperature (
T
) of pure HfC and HfC–15 vol%TaSi
2
; onset temperatures and final relative densities are also reported on each curve.
Figure 6.16. Examples of microstructures of MC sintered with MeSi
2
: SEM micrographs showing (a) HfC–MoSi
2
showing the cleaning effect of the silicide trapping HfO
2
and reduced to SiOC, (b) HfC–ZrSi
2
showing multiple core–shell grains, (c) TEM image showing dislocation between core and shell in TaC–TaSi
2
, (d) TEM image of a complex triple point in HfC–TaSi
2
, (e) HR–TEM showing clean interfaces in ZrC–TaSi
2
.
Chapter 07
Figure 7.1. Schematic of the matrix microstructure formation mechanism of an RMI Cf–ZrC composite. (a) Heterogeneous nucleation sites of ZrC at 1950°C; (b) growth and grouping of ZrC grains at 1950°C; (c) coalescence of ZrC grains and trapping of liquid Zr at 1950°C; (d) growth of ZrC particles with liquid Zr inclusions and precipitation of β-Zr at 1950°C; (e) coalescence, growth of ZrC, and trapping of β-Zr as temperature decreases (above 1835°C); (f) transformation of liquid Zr into the eutectic phase at 1835°C; (g) phase transformation of β-Zr into α-Zr at 1159°C and (h) final microstructure at room temperature, showing ZrC particles with α-Zr + ZrC and α-Zr inclusions. The eutectic phase composed of α-Zr + ZrC and α-Zr serves as the grain boundaries in areas of densely distributed ZrC particles.
Figure 7.2. Comparison of C/C–UHTC composites ablated for a 30 s period under a 3920 kW m
−2
heat flux: (a) C/C–ZrB
2
, (b) C/C–4ZrB
2
–1SiC, (c) C/C–1ZrB
2
–2SiC, (d) C/C–2SiC–1ZrB
2
–2HfC, (e) C/C–2SiC–1ZrB
2
–2TaC, and (f) C/C.
Figure 7.3. Cross section of a 30 mm diameter × 20 mm thick UHTC composite showing the distribution of UHTC powder.
Figure 7.4. UHTC composites after 60 s oxyacetylene torch testing.
Figure 7.5. The 30 mm diameter × 20 mm thick, Cf–HfB
2
composites after 60 s oxyacetylene torch testing at >2500°C showing negligible surface erosion.
Figure 7.6. Electron image and EDS mapping on the cross section of a Cf–HfB
2
composite subjected to 60 s oxyacetylene torch testing. (a) Back scattered electron image, (b) carbon, (c) hafnium, and (d) oxygen. The bright top layer in (a) indicates HfO
2
.
Figure 7.7. Microstructure of polished sections of ZrB
2
plus 20 vol% SiC plus SCS-9a fibers composite showing (a) representative fiber distribution and (b) matrix porosity.
Figure 7.8. Microstructures of the ablated HfC coating on a C/C composite in different regions: (a) central; (b) transitional; and (c) outer ablation region.
Figure 7.9. Cross-sectional microstructure of a hybrid UHTC composite. The bonding between the composite and monolith layers are fundamentally good as seen in the higher magnification image.
Chapter 08
Figure 8.1. Room-temperature elastic modulus as a function of porosity for ZrB
2
(left) with and without sintering aids [11–14, 16, 17, 20–23, 25–29, 31–35, 37–39]. Line represents fitted relationship of elastic modulus to porosity according to Nielsen's relationship [40, 41].
Figure 8.2. Room-temperature flexure strength as a function of grain size for ZrB
2
(left) with and without sintering additives [11–14, 16–29, 31, 33, 34, 36, 37, 48]. Line is not fitted to data, and is meant to guide the eye.
Figure 8.3. Room-temperature flexure strength as a function of SiC cluster size (equivalent area diameter) for ZrB
2
–30 vol% SiC ceramics produced by hot pressing [7–9].
Figure 8.4. Room-temperature flexure strength, elastic modulus, and Vickers hardness as a function of maximum SiC cluster size (major axis of ellipse) for ZrB
2
–30 vol% SiC ceramics prepared by hot pressing. The dashed line indicates the microcracking threshold that occurs at an SiC cluster size of approximately 11.5 μm [8].
Figure 8.5. Room-temperature flexure strength [16, 22, 26, 37, 50, 57] and fracture toughness [16, 22, 26, 37, 50, 57] as a function of SiC concentration for ZrB
2
–SiC ceramics produced by hot pressing and pressureless sintering.
Figure 8.6. Thermally etched cross section of ZrB
2
–30 vol% SiC. The image shows the crack path from a Vickers indent with arrows indicating predominantly transgranular fracture for the ZrB
2
grains and crack deflection near the ZrB
2
–SiC interfaces.
Figure 8.7. Elastic modulus as a function of additive content for selected hot-pressed ZrB
2
-based composites with SiC [16, 18, 26, 28, 52, 54, 63] , MoSi
2
[14, 64–67] , and ZrSi
2
[17] additives. Values have been corrected for porosity using a linear relationship and
b
= 2.0.
Figure 8.8. Room-temperature flexure strength and fracture toughness as a function of disilicide concentration for ZrB
2
–MeSi
2
ceramics produced by hot pressing [17, 27, 64].
Figure 8.9. Room-temperature flexure strength and fracture toughness as a function of SiC content for ZrB
2
–MoSi
2
–SiC and ZrB
2
–TaSi
2
–SiC ceramics [64, 88, 89].
Figure 8.10. Elevated-temperature elastic modulus of hot-pressed ZrB
2
with and without additives [20, 25,29].
Figure 8.11. Elevated-temperature elastic modulus of hot- pressed ZrB
2
–SiC with and without additives [25, 69].
Figure 8.12. Elevated-temperature flexure strength of selected hot-pressed ZrB
2
ceramics with and without additives in air and argon [11–13, 20, 25, 29, 30].
Figure 8.13. Elevated-temperature flexure strength of selected hot-pressed ZrB
2
–SiC ceramics with and without additives in argon [25, 69, 90, 91].
Figure 8.14. Elevated-temperature flexure strength of selected hot-pressed ZrB
2
–SiC ceramics with various additives in argon [11, 15, 25, 67].
Figure 8.15. Elevated-temperature four-point flexure strength of selected ZrB
2
–MeSi
2
ceramics in air [25, 65–67, 79, 82, 83].
Figure 8.16. Elevated-temperature fracture toughness (CNB) of hot-pressed ZrB
2
and ZrB
2
–SiC ceramics [30, 69].
Chapter 09
Figure 9.1. Thermochemical and experimental heat capacity (
C
p
) values for ZrB
2
[8, 14–17, 24, 26, 27].
Figure 9.2. Historic thermal conductivity as a function of temperature for ZrB
2
. Data for Clougherty changed testing method at 1000°C [6–12].
Figure 9.3. Current thermal conductivity as a function of temperature values for ZrB
2
.
a
Data corrected for
ρ
.
b
Data corrected for
C
p
[13–18, 20–23] (Jason Lonergan, Missouri University of Science and Technology, personal communication).
Figure 9.4. Thermal conductivity as a function of temperature for ZrB
2
with solid solution additions.
a
Data corrected for
ρ
[18, 21–23].
Figure 9.5. Heat capacity as a function of temperature for HfB
2
[24, 27, 35].
Figure 9.6. Thermal conductivity as a function of temperature for historic and current HfB
2
.
a
Data corrected for
ρ
[9, 10, 14, 18, 37, 39, 40].
Figure 9.7. Thermal conductivity as a function temperature for ZrB
2
with SiC additions ranging from 5 to 50 vol%. (Note: Clougherty changed testing methods at 1000°C.)
a
Data corrected for
ρ
[8, 14, 15, 18, 36, 41–45].
Figure 9.8. Thermal conductivity as a function of temperature for ZrB
2
with additions of carbon, MoSi
2
, or ZrC. Clougherty changed testing methods at 1000°C. [8, 11, 12, 20, 21, 48].
Figure 9.9. Thermal conductivity as a function of temperature for ZrB
2
-SiC-based composites with additions of, B
4
C, C (elemental, nanotubes (CNT) and graphite (Cg)), MoSi
2
, Si
3
N
4
, SiCw (whiskers), or ZrC. Clougherty changed testing methods at 1000°C.
a
Data corrected for
ρ
[8, 18, 36, 41, 43, 48, 60, 72].
Figure 9.10. Thermal conductivity as a function of temperature for HfB
2
–SiC with SiC contents ranging from 2 vol% to 30 vol%. Clougherty changed testing methods at 1000°C.
a
Data corrected for
ρ
[8, 14, 18, 28, 36, 39, 78].
Figure 9.11. Thermal conductivity as a function of temperature for HfB
2
with additions of B
x
C (
x
= 3 or 12), C, or SiC with C or B
4
C. Clougherty changed testing methods at 1000°C.
a
Data corrected for
ρ
[8, 18, 54, 75].
Figure 9.12. Total, electron, and phonon thermal conductivities as a function of temperature for ZrB
2
and HfB
2
.
a
Data corrected for
ρ
[15–17, 20, 79].
Figure 9.13. Thermal conductivities as a function of temperature for ZrB
2
–SiC and HfB
2
–SiC, including separation of the electron and phonon contributions to total conductivity.
a
Data corrected for
ρ
[16, 20, 50, 84].
Chapter 10
Figure 10.1. (a) Elastic constants for ZrB
2
as a function of temperature as measured by Okamoto
et al
. [12] and (b) the average Young's modulus,
E
avg
(filled squares); shear modulus,
G
avg
(filled triangles); and bulk modulus,
K
(filled circles), as a function of temperature using the same data. Also shown are the variation of Young's modulus as measured in flexure by Neuman
et al
. (half-filled diamonds) [16] and Rhodes
et al
. (open diamonds) [17] and the variation of Young's modulus of ZrB
2
as measured from the natural resonance frequency (open squares) [18].
Figure 10.2. Young's modulus versus temperature for a range of UHTCs. Closed symbols are measurements based on vibration, whereas open symbols were obtained from flexural tests. Data from Refs. [18, 20–23].
Figure 10.3. Hardness of two types of zirconium diboride (100% dense with addition of 20 vol% SiC and 90% dense with no additions) as a function of the size of the applied load. Data from Ref. [32].
Figure 10.4. Hardness as a function of load in a ZrB
2
containing SiC and B
4
C. Data taken from Ref. [32]. Where indents were apparently made in a single phase, they have been grouped accordingly.
Figure 10.5. TEM bright-field micrograph of a cross section through a Berkovich indent in ZrB
2
containing SiC. It appears that the SiC has resisted deformation more and has been pushed into the ZrB
2
grain above it. Reproduced with permission from Ref. 37. © The American Ceramic Society.
Figure 10.6. Scanning electron micrograph of a 50 mN indent in ZrB
2
showing multiple slip lines in three orientations formed by dislocations surfacing close to the indent.
Figure 10.7. Hardness variation with temperature of UHTCs: (a) diborides, (b) carbides, and (c) nitrides. Data from Refs. [37, 41–47].
Figure 10.8. Hardness,
H
, over elastic modulus,
E
, as a function of the ratio of the yield strength,
Y
, to the elastic modulus according to the models of Tabor [24], Johnson [52], and Vandeperre, Giuliani, and Clegg [53]. For the latter, the effect of Poisson's ratio is shown with the lower curve for
ν
= 0 and the upper curve for
ν
= 0.5. Also shown is the finite element calculation of the relationship taken from Ref. [54–56].
Figure 10.9. Hardness of ZrB
2
as a function of plastic strain rate. Data taken from Bhakhri
et al
. [41].
Figure 10.10. Deformation mechanism map for ZrB
2
recalculated based on the assessment of Wang [63]. Experimental data taken from the following sources: hardness [41, 44, 73, 74] and creep and flow stress measurements [65, 75].
Figure 10.11. Deformation mechanism map for ZrC recalculated using the assessment of Ashby and Frost [62]
.
Experimental data taken from the following sources: hardness [45] and creep and flow stress measurements [66, 84, 85].
Chapter 11
Figure 11.1. Overview of the approach used to model and evaluate UHTC leading-edge materials under simulated hypersonic flow conditions by Parthasarathy
et al
. [39, 40, 51–53, 57].
Figure 11.2. (a) Thermodynamic model for the oxidation of ZrB
2
by Fahrenholtz [49] plotted in terms of phase stability regions for various stoichiometric compounds. (b) Observation by Talmy
et al
. of the decrease in retained boria in the scale with temperature shown replotted using data [50] and (c) microstructural cross section of ZrB
2
after oxidation at 1500°C in air for 30 min, presented by Fahrenholtz [49].
Figure 11.3. (a) A schematic of the microstructure interpreted from experimental data and used to build the oxidation model for ZrB
2
. The loss of boria was taken to be limited by diffusion through porous channels in the intermediate temperature regime. (b) At lower temperatures, an external liquid boria forms and remains stable. (c) At very high temperatures, the boria evaporates as fast as it can form leading to rapid oxidation. (d) The transition between the three regimes as a function of temperature as predicted by the model of Parthasarathy
et al
. [52].
Figure 11.4. The oxidation model of Parthasarathy
et al
. [53] was able to rationalize the sudden jumps in oxidation kinetics with temperature in the ZrB
2
and HfB
2
systems, by proposing that the volume change associated with phase transformation from monoclinic to tetragonal oxide (ZrO
2
or HfO
2
) opens the porous channels in the scale. At the highest temperatures, the possible effect of unintentional dopant on the electronic conductivity of the oxide and thus the oxidation kinetics was estimated and was found to correlate with experimental data.
Figure 11.5. The proposed oxidation model [52] appears to capture the effect of oxygen partial pressure, but data in the literature are rather limited.
Figure 11.6. Microstructure and EDS mapping of the oxidation product of a 20 vol% SiC-containing ZrB
2
sample showing the phases present along with morphology and a depleted zone lacking SiC in a matrix of ZrB
2
after exposure in air at 1627°C for 100 min [20, 31].
Figure 11.7. Thermodynamic model for the oxidation of ZrB
2
–SiC calculated by Fahrenholtz [48] along with a schematic sketch showing a rationale for the formation of a depleted zone as observed by Opila
et al
. (Fig. 11.6).
Figure 11.8. (a) Experimental observation of microstructural morphology (e.g., Fig. 11.6), (b, c) Schematics of the microstructural morphology and phase content of the oxidation product used in the model of Parthasarathy
et al
. [57].
Figure 11.9. Predicted variation in oxidation kinetics of SiC-containing ZrB
2
as a function of SiC content compared with (a) experimental data of Talmy [66] and (b, c) Wang
et al
. [67]. Figure reproduced from the work of Parthasarathy
et al
. [57].
Figure 11.10. Thermal model of a leading-edge sample of UHTC was compared for two cases, one for the sample used in the scramjet tests and another simulating free flight. The results showed that the thermal profiles are nearly the same for the two cases near the leading-edge tip, which were of experimental interest [40].
Figure 11.11. The oxidation scale formed on the UHTC sample tested in the scramjet under conditions representing free flight Mach numbers of 6.2–7. No external glassy layer or depleted zone was observed; however, hafnon (HfSiO
4
) was present in the oxide scale as evidenced by both X-ray diffraction and EPMA analysis shown here [40].
Figure 11.12. The thermal model for the leading edge (made of HfB
2
–20 vol% SiC) under hypersonic flight conditions when combined with oxidation models can predict parameters of interest for design. The temperature at the tip of the leading edge is lower than the total temperature often assumed. Similarly, the steady-state heat flux is lower than the cold wall heat flux. The thermal profiles show a steep drop in temperature away from the tip, and the oxidation rates appear to be tolerable for UHTCs at Mach 6.5 [40].
Chapter 12
Figure 12.1. Ta–C phase diagram. From Ref. [5].
Figure 12.2. Crystal structures of (a) TaC, (b) ζ-Ta
4
C
3
, and (c) α-Ta
2
C.
Figure 12.3. The total and partial density of states (DOS) for TaC computed from electronic structure density function theory using full-potential linearized augmented plane wave plus local orbitals and the local density approximation. The continuity of the DOS through the Fermi level (0 eV) demonstrates that TaC has no band gap and is an electrical conductor. The partial density of states (pDOS) shows that the DOS at the Fermi level is mainly due to tantalum d-electrons, which suggests that the metallic nature is associated with the bonding between neighboring tantalum atoms through overlap of the d-orbitals. Taken from Ref. [11].
Figure 12.4. Left image is a series of {111} planes in TaC viewed along <110>. The right image is the removal of a {111} plane of carbon atoms and the subsequent shear along the now formed metallic Ta–Ta bonds. Stacking of three sequential highlighted boxes, one on top of another (or, alternatively, the loss of every fourth carbon plane with a shear), results in a unit cell of Ta
4
C
3
.
Figure 12.5. SEM backscattered micrographs of HIP processed tantalum carbides in at%: (a) 56Ta44C, (b) 58Ta42C, (c) 60Ta40C, (d) 64Ta36C, and (e) 68Ta32C. Images taken from Ref. [31].
Figure 12.6. VPS processed tantalum carbide microstructure: (a) schematic of the as-sprayed microstructure taken from Ref. [2]. (b) SEM micrograph of an as-sprayed tantalum carbide microstructure.
Figure 12.7. (a) TEM bright-field micrograph showing the Ta
4
C
3
crisscross lath pattern in TaC. (b) Scanning TEM high-angle annular dark-field (HAADF) micrograph revealing a series of parallel Ta
4
C
3
laths (gray contrast) parallel to Ta
2
C (bright contrast).
Figure 12.8. The potential mechanisms of dislocation glide on {111} planes in TaC. In this figure, the slip occurs between two tantalum layers, A and B, whose stacking is shown as white open circles and gray circles. The carbon atoms are shown as solid black circles and sit in the octahedral interstices between the tantalum layers. In this simple example, it is assumed that layer B will slip relative to layer A by a perfect dislocation,
a
/2<110>. (a) The large black arrow represents the slip of layer B relative to A along the <110> direction, that is, a perfect dislocation. If it is assumed the dislocations split into Shockley partials, the atoms at B will move first from its original position over the atom at site A and then back to a position at B, which is illustrated by the shorter dashed black arrows. (b) Under the assumption that the motion of the B tantalum atom over the A tantalum atom is unfavorable, then it is possible for the B atom to move to the C position, which is occupied by the carbon atoms. This motion is certainly less favorable than even the motion to the A position. This can be favorable if the carbon atom moves in a coordinated fashion with the A atom. The black dashed arrows show the slip associated with these new partial dislocations, and the dashed gray arrows represent the coordinated motion of the carbon atoms. If the material is substoichiometric, then the carbon atoms in B may not be present, making slip even easier and explaining the loss of hardness with decreasing carbon content for single-phase TaC
1−
x
materials.
Figure 12.9. Stress–strain curve for TaC at 2433 K. Taken from Ref. [59].
Figure 12.10. Hardness variation as a function of C/Ta composition and temperature. (a) The hardness at room temperature from various groups plotted as a function of carbon content. All hardness measurements are presumed to be made on polycrystals [5, 46, 59, 85]. (b) The hardness of TaC plotted as a function of temperature. The data of Kumashiro [58] is for indentation on a {001} surface, while the data of Koester and Moak [84] represent the hardness of a polycrystalline surface.
Chapter 13
Figure 13.1. (a) Ti–B binary equilibrium phase diagram [17]. (b) Schematic representation of AlB
2
crystal structure of TiB
2
[76]. (c) Illustration of the hexagonal network of boron atoms, with metal atoms situated above and below the boron network [1].
Figure 13.2. Varying sizes and morphological features of TiB
2
powder, synthesized via different routes. (a) Nanocrystalline TiB
2
powder prepared by the reaction of TiCl
4
with NaBH
4
[55]. (b) TiB
2
powders synthesized via benzene–thermal reaction of metallic sodium with amorphous boron powder and TiCl
4
at 400°C [57]. (c) High-energy ball-milled and mechanical alloyed Ti–67B nanocrystalline TiB
2
powder [52]. (d and e) Sol–gel-synthesized nanocrystalline TiB
2
powder [115].
Figure 13.3. SEM images of pressureless sintered TiB
2
–TiC composites sintered at (a) 1700°C without HEBM, (b) 1750°C without HEBM, (c) 1700°C with HEBM for 48 h, and (d) 1750°C with HEBM for 48 h [134].
Figure 13.4. STEM bright-field images of hot-pressed TiB
2
–MoSi
2
, showing the phase assemblage (Ti
5
Si
3
, Mo
5
Si
3
) and grain structure [26].
Figure 13.5. Variation of Gibbs free energy change (Δ
G
) of sintering reactions taking place during hot pressing of TiB
2
with TiSi
2
[37].
Figure 13.6. TEM micrographs of 4.8Ti–B
4
C hot pressed at 1800°C, showing (a) well-distributed TiB
2
and TiC grains, (b) platelike TiC
x
grain, (c) triangular TiC
x
, and (d) irregular TiC
x
[62].
Figure 13.7. Variations of sinter densities of (a) TiB
2
–6 wt% Cu and (b) ZrB
2
–6 wt% Cu, processed using SPS [34].
Figure 13.8. (a, b) SEM micrographs of TiB
2
–6 wt%Cu, processed using SPS (c) fracture surface showing a small amount of porosity for the same. By contrast, for ZrB
2
–6 wt% Cu composite, prepared under identical conditions, (d) irregular morphology and (e) (fractured surface) greater porosity can be observed [34].
Figure 13.9. (a) Lower and (b) higher magnification TEM micrographs of multi-stage spark plasma sintered TiB
2
–5%TiSi
2
(at 1450°C) [70].
Figure 13.10. Temperature variations of (a) hardness of different borides with different additives, (b) elastic modulus, (c) room temperature hardness of TiB
2
-based ceramics [24], and (d) flexural strength of monolithic TiB
2
and TiB
2
–TiSi
2
[75].
Figure 13.11. Δ
G
as a function of temperature for two possible reactions leading to the formation of TiB during SPS of TiB
2
. The dotted line shows Δ
G
= 0 [133].
Figure 13.12. (a) The variation of CTE as a function of temperature for TiB
2
–TiSi
2
[158]. (b) Schematic representation of sharp wing leading-edge component [110]. (c) Finite element modeling results showing the generation of stress gradient across the cross section in rocket motor nozzles during the early stages of firing [107]. Red (or darker shade) signifies position of the peak tensile stress.
Figure 13.13. (a) Schematic representation of the heat flux of sharp leading edges of hypersonic vehicles [121]. (b) Plot showing dependence of thermal conductivity with temperature for different diboride-based composites [109].
Figure 13.14. Thermal conductivities of hot-pressed TiB
2
–MoSi
2
, containing varying amounts of MoSi
2
[113].
Figure 13.15. SEM images of the surfaces of monolithic TiB
2
after oxidation at 850°C for (a) 1 h and (b) 4 h [4].
Figure 13.16. Internal cracking in oxide layer and highly textured rutile phase on the surface of monolithic TiB
2
oxidized at 800°C for (a) 10 h and 1000°C for (b) 30 h [4].
Figure 13.17. Cross-sectional SEM images showing the surface and subsurface layers after oxidation at (a) 800°C for 10 h and (b) 1000°C for 2 h. Note the absence of B
2
O
3
at high temperature [128].
Figure 13.18. Specific weight gain with respect to time during isothermal oxidation at 850°C for TiB
2
–WSi
2
composites with different WSi
2
loadings [131].
Figure 13.19. SEM images of ZrB
2
–SiC showing (a) 2 µm thick layer of B
2
O
3
and 6 µm thick ZrO
2
-rich layer formed on the surface of ZrB
2
–SiC after exposure to air at 1000°C for 30 min and (b) SiO
2
outer layer and second layer composed of ZrO
2
above of ZrB
2
–SiC layer after exposure to air at 1200°C for 30 min [128].
Figure 13.20. (a) Variations in wear rate with COF for TiB
2
and TiB
2
-based cermet against different counter bodies. (b)The TiB
2
-cermet has a composition of TiB
2
-16 vol% Ni
3
(Al,Ti); while that of monolithic TiB
2
has TiB
2
-5 vol% SiC. Fretting parameters include: load of 8N for 100,000 cycles with a frequency of 10 Hz and a displacement of 200 µm [139, 147, 148]. Wear of different ceramics after sliding against each other. The sliding wear test conditions : (plate-on-plate configuration) at rotation speed of 220 revolutions/min with sliding speed of 0.2 m/s and a load of 214N under unlubricated conditions.
Figure 13.21. (a) Three dimensional topographical view of the worn surface of TiB
2
-5 wt% TiSi
2
/steel at 10 N load, (b) the maximum wear peak profiles obtained at various loading conditions of the TiB
2
composite after fretting against steel counterbody, (c) three dimensional topographical view of worn surface of the TiB
2
-5 wt% TiSi
2
/ WC-6 wt% Co at 10 N load and (d) the maximum wear depth profiles obtained at various loading conditions of the TiB
2
composite after fretting against WC-6 wt% Co counterbody. Fretting conditions: 4 Hz frequency, 100,000 cycles and 100 µm stroke length.
Figure 13.22. (a) Worn surfaces of TiB
2
-5 wt% TiSi
2
after fretting against bearing steel ball, (b) the magnified image of the worn surface along with the EDS reveals the tribochemical layer. (c) The worn surfaces of TiB
2
-5 wt% TiSi
2
after fretting against WC-6 wt% Co ball and (d) the magnified image of the worn surface along with the EDS. Fretting conditions: 10 N load, 4 Hz frequency, 100 µm stroke length and 100,000 cycles. (Arrow marks indicate the fretting direction.)
Chapter 14
Figure 14.1. Hf–C phase diagram [41].
Figure 14.2. Optical micrograph of HfC
0.5
oxidized at 1865°C for 600 s. Showing the bilayer carbide–oxide scale with sharp interface boundary [74].
Figure 14.3. Partial pressures across a porous HfO
2
scale at 1400°C calculated using the Courtright–Holcomb gas shuttle model [76, 77].
Figure 14.4. Weight gain for HfC
x
oxidized at 1500°C for 15 min.
Figure 14.5. Optical micrographs of HfC
0.67
(left) and HfC
0.98
(right) samples oxidized at 1500°C for 15 min showing oxide scale thickness [78].
Figure 14.6. (a) Calculated CO pressure at the HfC
x
–HfO
2
interface for
x
= 1.0 and 0.5 [78]. (b) Free energies of formation for CO and HfO
2
as a function of temperature (Opeka M. Unpublished data).
Figure 14.7. Hf–N phase diagram [85].
Figure 14.8. Optical photograph of HfN
0.95
after 3 min arcjet exposure at 2000°C showing an adherent oxide scale [78].
Figure 14.9. (a) Posttest micrograph of Hf(33N) showing wavy oxide scale (Wuchina E, Opeka M. Unpublished data). (b) SEM micrograph of Hf(33N) showing a cavity within the oxide scale (Wuchina E, Opeka M. Unpublished data).
Figure 14.10. Posttest micrograph of HfN
0.75
showing oxide scale disruption (Wuchina E, Opeka M. Unpublished data).
Figure 14.11. Oxide scale thicknesses of HfC
0.98
, HfN
0.92
, and HfB
2
after 2000°C rocket motor firings at 3.43 and 10.3 MPa total pressure for 5, 10, and 20 s.
Chapter 15
Figure 15.1. Phase diagram of the uranium–oxygen system.
Figure 15.2. Schematic of a 17 × 17 PWR Fuel assembly with inserted control cluster, fuel pin, and dished pellet.
Figure 15.3. Schematic representations of (a) composite fuel and (b) composite fuel using a multilayer-coated fuel particle in which the coating acts as a buffer layer between the fuel particle and the matrix material.
Figure 15.4. Evolution of the coated fuel particle from uncoated to the standard TRISO and proposed QUADRISO as well as common fuel element compacts.
Figure 15.5. C-Pu-U isothermal section at 1973 K.
Figure 15.6. C-Si-U isothermal section at 1673 K.
Chapter 16
Figure 16.1. CIRA activities on UHTCs for thermal protection systems.
Figure 16.2. Configuration of test articles. Nose_1: breaking of nose tip during the plasma test.
Figure 16.3. (a) Monolithic ceramic winglet flight models mounted on the EXPERT TPS and the (b) EXPERT capsule.
Figure 16.4. CFD analysis: (a) surface heat flux (W/m
2
), (b) pressure (Pa), (c) temperature (K) distributions in fully catalytic conditions, (d) heat fluxes (W/m
2
), and Figure 16.4. (e) pressure (Pa) disturbances around the winglet.
Figure 16.5. IR thermography images recorded during the test and before the holder fracture (
t
= 32 s) (a) test article in centerline and (b) predicted CFD wall temperature in test conditions.
Figure 16.6. 3D model and image of SHARK wherein the gray UHTC tip is visible.
Figure 16.7. Fracture surface of SHARK Nose tip wherein the three separated fragments are also indicated.
Guide
Cover
Table of Contents
Begin Reading
Pages
iii
iv
v
ix
xi
xii
xiii
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441