INDEX
[The numbers refer to the pages]
Absolute convergence, 189, 190.
Addition theorems, 64, 105, 123, 193, 198, 199.
Algebraic factors, 219.
Ambiguous case, 2.
Amplitude, 145, see principal value.
Angle-bisectors in triangle, 11.
Angle measurement, 119.
Area, hyperbolic, 52.
Argand diagram, defined, 145.
z1±z2, 148.
z1z2, z1 ÷ z2, 151.
Argument, 145.
Base of logarithms, natural, 63.
Binomial Series, 142 ii. and Ex. 3, 253.
Centroid, 10.
ch, sh, behaviour of, 109.
calculus applications, 107, 110.
formulae for, 105.
generalised, 198.
Circular functions, see cos.
Circumcentre, 4.
cis θ, 152.
Complex number, amplitude, 145, 146.
conjugate, 143.
first and second parts, 143.
geometrical representation, see Argand.
Complex number, manipulation, 141.
modulus, 145.
modulus-amplitude, 145.
nomenclature, 143.
product, quotient, 139, 151, 152.
Complex variable, functions of
geometrical representation, see Argand.
principal value, 146, 164, 165.
exp, 191.
sh, ch, etc., 198.
sin–1, sh–1, etc., 256.
Compound Interest law, 93.
Convergence, 77.
circle of, 247.
conditional, 190.
cos (A + B), 123.
cosh, see ch.
cos θ, sin θ, differential of, 79.
exponential form, 194.
factors of, 223.
generalised, 197.
cos nθ, in factors, 223.
in terms of c and s, 172.
in terms of c or s, 178.
cosnθ, cospθ sinqθ, in multiple angles 169.
Cotes’ properties, 228.
Cubic equations, 44.
Cyclic quadrilateral, 24.
De Moivre, property of, 228.
and applications to
De Moivre, powers and roots, 165.
solution of equations, 167.
summation of series, 174.
Distances between points in triangle, 15.
e, defined, 63.
evaluated, 91.
irrationality, 92.
series, 91.
E-centre, 4.
Elimination, 270.
Equations, approx. solution, 82, 95.
construction of, 204.
cubic, 44.
functions of roots of, 206, 208.
graphical solution, 38.
trigonometrical, 34.
Errors, 20.
Essentially distinct roots, 212.
Euler’s constant, 70.
Expansions, polynomials, etc.,
cosnθ, sinnθ, 169.
Expansions, power series
(1 + x)–1, 77.
tan, 82.
tan–1, 88.
Exponential function,
differential of, 64.
expansion of, 90.
Factors, algebraic, 219.
cos θ, sin θ, 223.
Cotes and de Moivre, 228.
fundamental theorem, 142, 219.
series and products, 228.
trigonometrical, 221.
x2n – 2xn cos nα + 1, 226.
Feuerbach’s theorem, 16.
‘hyp,’ 52.
Functions, hyperbolic, 104, 198.
inverse, 46, 64, 88, 110, 256.
many-valued, 241.
Geometric progression, 77, 191.
Gregory’s expansion, 88.
Hyperbolic functions, 52, and see
ch.
Identities, 263.
IH2, I1H2, IN, I1N, 16.
In-centre, 4.
Indices, zn, 140.
zp/q, 162.
Inequalities, cos, sin, 80.
miscellaneous, 57.
trigonometrical, 274.
Infinite Integrals, 53, 54, 57 (No. 17), 75, 76.
Inverse Functions (see also Functions),
differentiation of, 157 (No. 16).
principal values, 155.
tan–1m ± tan–1m′, 47, 156 (No. 12).
Limits for n→∞,
xn, xn/n!, 78.
(1±x/n)n, 93.
(cos x/n)n, 70.
, 69.
– log n, 69.
Limits for, x→∞,
hyp x, 53.
(log x)/xp, 68, 71 (No. 11), 73 (No. 25).
Limits for y→0,
(ey – 1)/y, 69.
hyp | y |, 54.
{log(1 + y)}/y, 68.
y log | y |, 68.
Logarithms, base e, 63.
differentiation, 63.
inequalities, 67.
Logarithms, integration, 67 (No. 45).
Machin’s formula, 89.
Many-valued functions, 47, 155, 241.
Mass-centre theorem, 10.
Maxima and Minima, 274.
Median, 11.
Modulus-amplitude form, 145.
Number, 137, and see Complex.
OH2, OI2 OI12, 15.
Ordered pairs, 138.
Orthocentre, 5.
Osborn’s rule, 105.
π, evaluation, 89.
product, 223.
Partial fractions, 231,
Pedal triangle, 5.
Polar circle, 6.
Power series, 77.
Powers, see Indices.
Powers of cos θ, sin θ, 169.
Principal values,
(cis θ)p/q 164.
cos–1x, etc., 155.
Log w, Log(1 + w), Logzζ, 241, 247, 254.
range of, 155.
Tan–1z, 258.
Projection, cos, sin(A + B), 123.
points and lines, 118.
summation, 125.
Quadrilateral, circumscribable, 27.
cyclic, 24.
general, 27.
Roots, essentially distinct, 212.
Roots of equations, 204.
Rutherford’s formula, 89.
Series (see also Expansions)
∑r–4, 212 (No. 21).
∑ cos (α + rβ), ∑ sin (α + rβ), 125, 127.
∑xr cos rθ, ∑xr sin rθ, 174.
∑( – 1 )n–1ρnn–1 cos (or sin)nϕ 245.
binomial, 253.
calculus method, 128, 132 (ii).
products and, 228.
sh, sin, sinh, see ch, cos.
sin (A + B), 123.
Solution of Triangles, 1, 2, 19.
Submultiple angles,
cos θ, sin θ in terms of cos θ, 41.
cos θ, sin θ in terms of sin θ, 41-43.
cos θ in terms of cos θ, 43.
Subsidiary angle, 1.
Successive approximation, 82, 95.
tan x, 82.
Trigonometrical factors, 221.
Wallis’ limit for π, 223.