Index
A
Algorithmic efficiency, model for,
223
Aloha protocol, instability of,
201–
202
Alternating renewal process,
439
Arbitrary queueing system,
520
Autoregressive process,
635
B
Bernoulli probability mass function,
691
Bernoulli random variables,
26,
50–
51,
63–
64,
281–
282,
323,
365–
366,
453–
454,
595–
596,
665,
691,
693
Beta density with parameters,
56–
57
Binomial compounding distribution,
161
Binomial distribution with parameters,
59
Binomial probabilities,
199,
240
Binomial random variables,
26,
95,
665
Birth and death model,
357
forward equations for,
373
limiting probabilities for,
375
Birth and death queueing models,
499
Black-Scholes option pricing formula,
619
Bonus Malus automobile insurance system,
186,
218–
219
Bose–Einstein statistics,
141
independent increment assumption,
609–
610
maximum variable and gambler’s ruin problem,
611
pricing stock options
Black-Scholes option pricing formula,
619
Brownian motion with drift,
624
example in options pricing,
614
with variance parameter,
622
stationary processes,
633
variations on
weakly stationary processes,
637
C
heuristic proof of,
76–
77
for renewal processes,
426
Chebyshev’s inequality,
72
Chi-squared density,
98–
99
Chi-square distribution,
660
Chi-squared random variable,
66–
68
Class mobility model,
207
Closed systems, network of queues,
514
Common distribution function,
125–
126
Communication systems,
184
Compounding distribution,
157–
158
Compound Poisson random variable,
113
Compound random variables,
102
Computer software package,
320
Conditional density function,
333–
334
Conditional distribution
Conditional expectation,
97
probability and. See Conditional
probability and expectation
Conditional/mixed Poisson processes,
332
Conditional Poisson process,
332–
333
Conditional probability,
6,
11
Conditional probability and expectation
applications
Bose–Einstein statistics,
141
k -record values of discrete random variables,
149
left skip free random walks,
152
mean time for patterns,
146
computing expectations by conditioning,
100
computing probabilities by conditioning,
115
identity for compound random variables,
157
binomial compounding distribution,
161
compounding distribution related to negative binomial,
162
Poisson compounding distribution,
160
Conditional variance
formula,
111–
112,
234–
235,
281–
282,
329–
330,
333,
365–
366,
498–
499,
531–
532,
731,
748–
749
Continuous-Markov chain,
732
Continuous random variables,
24,
30,
32–
33
exponential random variables,
32
gamma random variables,
33
general techniques for
inverse transformation method,
649
normal random variables,
33
with probability density function,
39
special techniques for
chi-squared distribution,
660
exponential distribution,
662
Von Neumann algorithm,
662
uniform random variable,
31
birth and death processes,
359
limiting probabilities,
374
transition probabilities of,
366,
396
transition probability function,
366
Continuous-time process,
78
Continuous-time stochastic process,
358
Convolution of distributions,
52
Coupon collecting problem,
306–
307
Covariance, properties of,
48
Coxian random variable,
296–
297
Cumulative distribution function,
24–
25,
32,
42,
52
and probability density, relationship between,
31
D
Data sequence, defined,
149–
150
Decreasing failure rate (DFR),
581
of gamma random variable,
115–
116
Dirichlet distribution,
143–
144
Discrete random variables,
24–
25
Bernoulli random variable,
26
binomial random variable,
26
geometric random variable,
28
Poisson random variable,
29
with probability mass function,
39
Discrete-time process,
78
Distributed discrete random variables,
146
Distributed random variables, independent and identically,
424–
425,
459
Drift, Brownian motion with,
612
E
Equilibrium distribution,
442
Ergodic continuous-time Markov chain,
387–
388
Ergodic Markov chain,
220,
242
Erlang’s loss formula,
482
Erlang’s loss system,
542
Event times, simulating,
676
Exponential distribution,
662
exponential random variables, convolutions of,
293
Exponential interarrival random variables,
493–
494
Exponential models
birth and death queueing models,
499
queueing system with bulk service,
507
single-server exponential queueing system,
486
with finite capacity,
495
and expected discounted returns,
279
F
of hyperexponential random variable,
285–
286
Finite-state Markov chain,
197
First-order autoregressive process,
635
Four-component structure,
561–
562
Front-of-the-line rule,
134,
244
Fundamental queueing identity,
503–
504
G
Gamma random variables,
33
finite dimensional distributions of,
634
Genetics, Markov chain in,
208
Geometric Brownian motion,
612
Geometric distribution,
665
busy and idle periods,
538
Graph
H
Hastings–Metropolis algorithm,
247–
250
Hawkes processes, random intensity functions and,
334
Hazard rate function. See Failure rate function
Heuristic proof of equation,
483
Hidden Markov chains,
254
Hitting time theorem,
154
Hyperexponential random variable,
285–
286
Hypergeometric distribution,
51,
95
Hypoexponential random variable,
293–
296
I
Impulse response function,
637
Inclusion–exclusion bounds,
573
Inclusion–exclusion identity,
6,
69–
71
Inclusion–exclusion theorem,
128
Increasing failure rate (IFR) distribution,
581,
586
Increasing failure rate on the average (IFRA) distribution,
559
Independent Bernoulli random variables,
74
Independent Bernoulli trials,
148
Independent components, reliability systems of,
565
Independent geometrics,
733
Independent increments,
297,
752
Independent time reversible continuous-time Markov chains,
386
Independent with distribution function,
313
Indicator random variable,
23
Infinite server Poisson queue, output process of,
326
Instantaneous transition rates,
368,
384
Insurance ruin problem,
462
Integrated Brownian motion,
631–
632
Intensity function, nonhomogeneous Poisson process with,
322
Interarrival density,
469
Inverse transformation method,
649
Irreducible Markov chain,
245
J
Joint cumulative probability distribution function,
42
Joint density function of
n random variables,
57
Joint distribution functions,
42
Jointly distributed random variables
covariance and variance of,
46
independent random variables,
45
joint distribution functions,
42
joint probability distribution of functions,
55
Joint probability distributions,
43
Joint probability mass function,
42
K
“Key renewal theorem,”
436
Kolmogorov forward equations,
372–
373
with equal probabilities,
567
with identical components,
583–
584
L
Limiting probabilities for Markov chain,
209
Linear birth rate, birth process with,
360
Linear growth model with immigration,
361,
376–
377
Long-run proportions, Markov chain,
204
M
applications
algorithmic efficiency, model for,
223
gambler’s ruin problem,
220
probabilistic algorithm for satisfiability problem,
226
Chapman–Kolmogorov equations,
187
classification of states,
194
predicting the states,
259
long-run proportions and,
204
Markov decision processes,
251
mean pattern times in,
215
mean time spent in transient states,
231
stationary distribution of,
695
transforming process into,
185
Markov decision processes,
251
Markov’s inequality,
72,
711
Markov transition probability matrix,
247–
248,
515
Martingale stopping theorem,
753
Matching rounds problem, variance in,
113–
114
Mean value
M / G /1 system
optimization example,
527
queue with server breakdown,
531
M / M /1
with impatient customers,
502–
503
steady-state customer,
492
Moment generating functions,
58,
713,
747
joint distribution of mean and variance,
66
number of events, distribution of,
69
system of independent components,
587
Monte Carlo simulation,
247
Moving average process,
636
m -step transition probability,
191
Multinomial probability,
199–
200
Multiserver exponential queueing system,
363,
376
Multivariate normal distribution,
65,
67
N
NBU. See New better than used
of noncentral chisquared random variable,
718
Network of queues
New better than used (NBU),
457
with intensity function,
731
Nonoverlapping patterns,
147–
148
Nonstationary Poisson process. See Nonhomogeneous Poisson process
n -step transition probabilities,
187–
188
O
One-step transition probabilities,
187–
188
Open systems, network of queues,
510
Ornstein–Uhlenbeck process,
635
P
Pairwise independent events,
10
Poisson compounding distribution,
160
Poisson process,
277,
299–
300,
308–
309,
320,
360,
409,
448–
449,
462–
463,
470,
481,
486,
522,
527,
623,
633,
646,
654–
655,
661–
662,
666–
667,
742
conditional distribution of arrival times,
309
interarrival and waiting time distributions,
301
software reliability, estimating,
320
Poisson random variables,
29,
95–
96,
117,
132,
139,
186–
187,
212–
213,
218–
219,
323,
329,
331,
531,
533,
666,
730,
737
Pollaczek–Khintchine formula,
521
Power spectral density,
638–
639
Pricing stock options
Black-Scholes option pricing formula,
619
example in options pricing,
614
Priority queueing systems,
524–
525
Probabilistic algorithm,
230
Probability density
relationship between cumulative distribution and,
31
conditional probabilities,
6
probabilities defined on events,
4
sample space and events,
1
Q
Queueing cost identity,
489–
490
Queueing models, fundamental quantities for,
482
Queueing theory
exponential models
birth and death queueing models,
499
queueing system with bulk service,
507
single-server exponential queueing system,
486,
495
M / G /1 system
optimization example,
527
queue with server breakdown,
531
network of queues
preliminaries
steady-state probabilities,
484
R
Random intensity functions,
334–
335
and Hawkes processes,
334
Random permutation, generating,
646–
648
Random-sized batch arrivals,
M /
G /1 with,
523
Random telegraph signal process,
633–
634,
636
covariance and variance of sums of,
46
expectation of
joint probability distribution of functions,
55
Rate of the distribution,
285
inclusion and exclusion, method of,
570
obtaining bounds on
r (p), method for,
578
independent components, reliability systems of,
565
reliability function, bounds on,
570
inclusion and exclusion method,
570
obtaining bounds on
r (p),
578
minimal path and minimal cut sets,
562
system lifetime, expected,
587
parallel system, upper bound on,
591
suspended animation, series model with,
597
Renewal arrivals, queueing system with,
437
Renewal interarrival distribution,
450
Renewal theory and applications
distribution of N (t),
411
limit theorems and applications,
415
patterns, applications to
continuous random variables,
461
discrete random variables,
453
distinct values, expected time to maximal run of,
459
insurance ruin problem,
462
regenerative processes,
436
renewal function, computing,
449
renewal reward processes,
427
semi-Markov processes,
444
Reverse chain equations,
387,
389
Reverse time equations,
390–
392
S
Satisfiability problem,
230
probabilistic algorithm for,
226
Second-order stationary process,
634,
636
Self-exciting process,
335
Sequence of interarrival times,
301–
303
Sequential queueing system,
391
continuous random variables. See Continuous random variables
determining number of runs,
694
from discrete distributions,
664
stationary distribution of Markov chain, coupling from past,
695,
697
stochastic processes,
671
nonhomogeneous Poisson process,
672
two-dimensional Poisson process,
677
of two-dimensional Poisson processes,
646
variance reduction techniques,
680
use of antithetic variables,
681
Single-server exponential queueing system,
486,
507–
508
Single-server Poisson arrival queues,
328
Single-server system,
482
Standard Brownian motion,
608,
632
Standard normal distribution function,
426
Standard normal random variables,
68,
654
Standard/unit normal distribution,
34
State space of stochastic process,
78
Stationary distribution of Markov chain,
695
Stationary ergodic Markov chain,
237
Stationary processes,
633
Steady-state distribution,
544
Strong law of large numbers,
73
Symmetric random walk,
199
T
Tail distribution function,
293–
296
Tandem/sequential system,
510
Taylor series expansion,
76–
77
Time inventory, long-run proportion of,
443–
444
Time reversible chain,
385
Time reversible equations,
384–
385
Time reversible Markov chain,
237
T -random variable,
98–
99
Transition probabilities
of continuous-time Markov chain,
366
Two-dimensional Poisson process,
677
Two independent uniform random variables, sum of,
53
Two-state Markov chain,
219–
220
Two-step transition matrix,
188–
189
U
Unconditional probabilities,
194
Uniformly distributed components, series system of,
588
Uniform random variable,
31,
712
V
Variance parameter, process with,
622
Von Neumann algorithm,
662
W
Weakly stationary processes,
634
harmonic analysis of,
637
Weibull distribution,
582
White noise transformation,
628
Y