1. Karpicke JD, Roediger HL. The critical importance of retrieval for learning. Science. 2008;319:966–968.
1. Genesee F. Second language learning through immersion: A review of U.S programs. Rev Educ Res. 1985;55(4, Winter):541–561.
2. Grube, G.M.A., Reeve C.D.C., 1992. Plato: Republic. Hackett Publishing Co., Inc.
3. Hubel DH, Wiesel TN. Brain and visual perception: The story of a 25-year collaboration New York: Oxford University Press; 2004; 707.
4. Marr D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information New York: W.H. Freeman and Company; 1982.
5. Whitehead AN. The aims of education. Daedalus. 1959;88.1:192–205.
1. Berry DC, Broadbent DE. On the relationship between task performance and associated verbalized knowledge. Q J Exp Psychol. 1984;36A:209–231.
1. Azad, K., 2011. Math, Better Explained: Learn to Unlock Your Math Intuition. Amazon Digital Services.
2. Fawcett TW, Andrew DH. Heavy use of equations impedes communication among biologists. Proc Natl Acad Sci. 2012;109.29:11735–11739.
3. Gabbiani F, Steven JC. Mathematics for neuroscientists Academic Press 2010.
4. Gigerenzer G, Ulrich H. How to improve Bayesian reasoning without instruction: Frequency formats. Psychol Rev. 1995;102.4:684–704.
5. Gladwell, M., 2009. What the dog saw: and other adventures. ePenguin.
6. “Student” Gosset WS. The probable error of a mean. Biometrika. 1908;6:1–25.
7. Hoffrage U, Gerd G. Using natural frequencies to improve diagnostic inferences. Acad Med. 1998;73.5:538–540.
8. MacKay, 2003. Information Theory, Inference, and Learning Algorithms. Cambridge University Press.
1. Donders FC. Over de snelheid van psychische processen Onderzoekingen gedaan in het Physiologisch Laboratorium der Utrechtsche Hoogeschool. Tweede Reeks. 1868;II:92–120 Reprinted in and translated as Donders, F.C. (1969). On the speed of mental processes. Acta Psychologica, 30, Attention and Performance II, 412–431.
2. Shepard R, Metzler J. Mental rotation of three dimensional objects. Science. 1971;171(972):701–703.
3. Treisman A, Gelade G. A feature integration theory of attention. Cognit Psychol. 1980;12:97–136.
1. Helmholtz H. Handbuch der Physiologischen Optik Hamburg: Voss; 1867.
2. James W. The principles of psychology. vol. 1 New York: Henry Holt; 1890.
3. Posner MI. Orienting of attention. Q J Exp Psychol. 1980;32:3–25.
1. Carpenter R, Robson J. Vision Research: A Practical Guide to Laboratory Methods New York: Oxford University Press; 1999.
2. Fechner, G.T. 1848. Nanna, oder über das Seelenleben der Pflanzen. Leipzig. Leopold Voss.
3. Fechner GT. Zend-Avesta oder über die Dinge des Himmels und des Jenseits: Vom Standpunkt der Naturbetrachtung Leipzig: Leopold Voss; 1851.
4. Fechner GT. Elemente der Psychophysik Leipzig: Breitkopf und Härtel; 1860.
5. Hecht SP. Energy, quanta, and vision. J Gen Physiol. 1942;25:819–840.
6. Norton TT, Corliss DA, Bailey JE. The Psychophysical Measurement of Visual Function Woburn, MA: Butterworth-Heinemann; 2002.
1. Smith ST. MATLAB: advanced GUI development Dog Ear Publishing 2006.
1. Fisher RA. Statistical Methods for Research Workers Edinburgh: Oliver and Boyd; 1925.
2. Green DM, Swets JA. Signal Detection Theory and Psychophysics New York: John Wiley & Sons, Inc; 1966.
3. Rosenthal R. Experimenter Effects in Behavioral Research New York: Irvington; 1976.
4. Ziliak ST, McCloskey DN. The Cult of Statistical Significance How the Standard Error Costs Us Jobs, Justice, and Lives University of Michigan Press 2008.
1. Van Drongelen, W., 2006. Signal Processing for Neuroscientists: An Introduction to the Analysis of Physiological Signals. Academic Press, Burlington, MA.
2. Hillenbrand J, Getty LA, Clark MJ, Wheeler K. Acoustic characteristics of American English vowels. J Acoust Soc Am. 1995;97:3099–3111.
3. Peterson GE, Barney HL. Control methods used in a study of the vowels. J Acoust Soc Am. 1952;24:175–184.
1. Van Drongelen W. Signal Processing for Neuroscientists: An Introduction to the Analysis of Physiological Signals Burlington, MA: Academic Press; 2006.
1. Percival D, Walden A. Wavelet Methods for Time Series Analysis Cambridge: Cambridge University Press; 2000.
2. Quiroga R, Nadasdy Z, Ben-Shaul Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 2004;16:1661–1687.
1. Fitzhugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys J. 1961;1:445–466.
1. Dayan P, Abbott LF. Theoretical neuroscience Cambridge, MA: MIT Press; 2001.
2. Lotto RB, Williams SM, Purves D. An empirical basis for Mach bands. Proc Natl Acad Sci USA. 1999;96:5239–5244.
3. Ratliff F. Mach bands: Quantitative studies on neural networks in the retina San Francisco, CA: Holden-Day; 1965.
4. Sekular R, Blake R. Perception 4th Ed. New York: McGraw-Hill; 2002.
1. Hatsopoulos NG, Ojakangas CL, Paninski L, Donoghue JP. Information about movement direction obtained from synchronous activity of motor cortical neurons. Proc Natl Acad Sci USA. 1998;95(26):15706–15711.
2. Optican LM, Richmond BJ. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex III Information theoretic analysis. J Neurophysiol. 1987;57(1):162–178.
3. Panzeri S, Senatore R, Montemurro MA, Petersen RS. Correcting for the sampling bias problem in spike train information measures. J Neurophysiol. 2007;98(3):1064–1072.
4. Richmond BJ, Optican LM. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex II Quantification of response waveform. J Neurophysiol. 1987;57(1):147–161.
5. Richmond BJ, Optican LM, Podell M, Spitzer H. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex I Response characteristics. J Neurophysiol. 1987;57(1):132–146.
6. Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423 623–656.
1. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci. 1982;2(11):1527–1537.
2. Hartline HK. The receptive fields of optic nerve fibers. Am J Physiol. 1940;130:690–699.
1. Hatsopoulos NG, Xu Q, Amit Y. Encoding of movement fragments in the motor cortex. J Neurosci. 2007;27:5105–5114.
2. Moran DW, Schwartz AB. Motor cortical representation of speed and direction during reaching. J Neurophysiol. 1999;82:2676–2692.
1. Georgopoulos AP, Schwartz AB, Kettner RE. Neuronal population coding of movement direction. Science. 1986;233(4771):1416–1419.
2. Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442(7099):164–171.
3. Papsin BC, Gordon KA. Cochlear implants for children with severe-to-profound hearing loss. N Engl J Med. 2007;357(23):2380–2387.
1. Brockwell AE, Rojas AL, Kass RE. Recursive Bayesian decoding of motor cortical signals by particle filtering. J Neurophysiol. 2004;91(4):1899–1907.
2. Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J Neurosci. 1998;18(18):7411–7425.
3. Georgopoulos AP, Kettner RE, Schwartz AB. Primate motor cortex and free arm movements to visual targets in three-dimensional space II Coding of the direction of movement by a neuronal population. J Neurosci. 1988;8(8):2928–2937.
4. Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442(7099):164–171.
5. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP. Instant neural control of a movement signal. Nature. 2002;416(6877):141–142.
6. Warland DK, Reinagel P, Meister M. Decoding visual information from a population of retinal ganglion cells. J Neurophysiol. 1997;78(5):2336–2350.
7. Wu W, Shaikhouni A, Donoghue JP, Black MJ. Closed-loop neural control of cursor motion using a Kalman filter. Conf Proc IEEE Eng Med Biol Soc. 2004;6:4126–4129.
1. van Drongelen W. Signal Processing for Neuroscientists: Introduction to the Analysis of Physiological Signals Amsterdam: Elsevier/Academic Press; 2007.
2. Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M. Local origin of field potentials in visual cortex. Neuron. 2009;61(1):35–41.
3. Mitra P, Bokil H. Observed Brain Dynamics New York: Oxford University Press; 2008.
4. O’Leary JG, Hatsopoulos NG. Early visuomotor representations revealed from evoked local field potentials in motor and premotor cortical areas. J Neurophysiol. 2006;96(3):1492–1506.
5. Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci. 2002;5(8):805–811.
1. Aguirre GK, Zarahn E, D’Esposito M. The variability of human, BOLD hemodynamic responses. Neuroimage. 1998;8:360–369.
2. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course EPI of human brain function during task activation. Magn Reson Med. 1992;25:390–397.
3. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–541.
4. Boynton GM, Engel SA, Glover GH, Heeger DJ. Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci. 1996;16:4207–4221.
5. Buchel C, Friston KJ. Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex. 1997;7:768–778.
6. Buckner RL. The hemodynamic inverse problem: making inferences about neural activity from measured MRI signals. Proc Natl Acad Sci USA. 2003;100:2177–2179.
7. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001;14:140–151.
8. Calhoun VD, Stevens MC, Pearlson GD, Kiehl KA. fMRI analysis with the general linear model: removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms. Neuroimage. 2004;22:252–257.
9. Chumbley JR, Friston KJ. False discovery rate revisited: FDR and topological inference using Gaussian random fields. Neuroimage. 2009;44:62–70.
10. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29:162–173.
11. Donaldson DI, Buckner RL. Effective paradigm design. In: Jezzard P, Matthews PM, Smith SM, eds. Functional MRI: An Introduction to Methods. Oxford University Press 2003.
12. Evans, A.C., Collins, D.L., Mills, S.R., Brown, E.D., Kelly, R.L., Peters, T.M., 1993. 3D statistical neuroanatomical models from 305 MRI volumes. IEEE--Nuclear Science Symposium and Medical Imaging Conference, pp. 1813–1817.
13. Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med. 1995;33:636–647.
14. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102:9673–9678.
15. Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage. 1997;6:218–229.
16. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003;19:1273–1302.
17. Friston KJ, Holmes AP, Poline JB, et al. Analysis of fMRI time-series revisited. Neuroimage. 1995;2:45–53.
18. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage. 2002;15:870–878.
19. Gitelman DR, Penny WD, Ashburner J, Friston KJ. Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. Neuroimage. 2003;19:200–207.
20. Handwerker DA, Ollinger JM, D’Esposito M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage. 2004;21:1639–1651.
21. Henson, R., Rugg, M., Friston, K.J., 2001. The choice of basis functions in event-related fMRI. HBM01 abstract, Neuroimage, 13, 149.
22. Henson RN, Shallice T, Gorno-Tempini ML, Dolan RJ. Face repetition effects in implicit and explicit memory tests as measured by fMRI. Cereb Cortex. 2002;12:178–186.
23. Huettel SA, McCarthy G. The effects of single-trial averaging upon the spatial extent of fMRI activation. Neuroreport. 2001;12:2411–2416.
24. Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA. 1992;89:5675–5679.
25. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412:150–157.
26. McIntosh AR, Bookstein FL, Haxby JV, Grady CL. Spatial pattern analysis of functional brain images using partial least squares. Neuroimage. 1996;3:143–157.
27. McLaren, D.G., Ries, M.L., Xu, G, Johnson, S.C., 2012. A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. NeuroImage. 61, 1277–1286.
28. Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA. 1992;89:5951–5955.
29. Pauling L, Coryell CD. The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. Proc Natl Acad Sci USA. 1936;22:210–216.
30. Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–476.
31. Shulman GL, McAvoy MP, Cowan MC, et al. Quantitative analysis of attention and detection signals during visual search. J Neurophysiol. 2003;90:3384–3397.
32. Smith SM. Overview of fMRI analysis. In: Jezzard P, Matthews PM, Smith SM, eds. Functional MRI: An Introduction to Methods. Oxford University Press 2003a.
33. Smith SM. Preparing fMRI data for statistical analysis. In: Jezzard P, Matthews PM, Smith SM, eds. Functional MRI: An Introduction to Methods. Oxford University Press 2003b.
34. Steffener J, Tabert M, Reuben A, Stern Y. Investigating hemodynamic response variability at the group level using basis functions. Neuroimage. 2010;49:2113–2122.
35. Worsley KJ, Friston KJ. Analysis of fMRI time-series revisited—again. Neuroimage. 1995;2:173–181.
1. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;116:500–544.
1. del Castillo J, Katz B. The effect of magnesium on the activity of motor nerve endings. J Physiol (Lond). 1954;124:553–559.
2. del Castillo J, Katz B. Quantal components of the end-plate potential. J Physiol. 1954;124:560–573.
3. Fatt P, Katz B. Spontaneous sunthershold activity at motor nerve endings. J Physiol (Lond). 1952;117:109–128.
1. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117:500–544.
2. Hodgkin AL, Katz B. The effect of sodium ions on the electrical activity of the gaint axon of the squid. J Physiol. 1949;108(1):37–77.
1. Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw. 2003;14(6):1569–1572.
1. Murray JD. Mathematical biology I: An introduction New York: Springer-Verlag; 2002.
2. Strauss WA. Partial differential equations: An introduction New York: John Wiley & Sons, Inc; 1992.
3. Wilson HR. Spikes, decisions, and actions: Dynamical foundations of neuroscience Oxford: Oxford University Press; 1999.
1. Shadlen MN, Newsome WT. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol. 2001;86(4):1916–1936.
2. Swensson R. The elusive tradeoff: Speed vs accuracy in visual discrimination tasks. Percept Psychophys. 1972;vol. 12(1-A):16–32.
1. Herbst JA, Gammeter S, Ferrero D, Hahnloser RH. Spike sorting with hidden Markov models. J Neurosci Methods. 2008;174(1):126–134.
1. Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM. The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput. 2002;14:325–346.
2. Donald EK. Seminumerical Algorithms. The Art of Computer Programming. vol. 2 NJ: Addison Wesley; 1969.
3. von Neumann J. Various techniques used in connection with random digits Monte Carlo methods. Nat Bureau Standards. 1951;12:36–38.
1. Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. J Biophys. 1972;12:1–24.
1. Bak P, Chen K, Tang C. A forest-fire model and some thoughts on turbulence. Phys Lett A. 1990;147:297–300.
2. Buice M, Cowan JD. Field-theoretic approach to fluctuation effects in neural networks. Phys Rev E. 2007;75:051919.
3. Drossel B, Schwabl F. Self-organized critical forest-fire model. Phys Rev Lett. 1992;69:1629–1632.
4. Drossel C, Schwabl. Crossover from percolation to self-organized criticality. Phys Rev E. 1994;50:R2399–R2402.
1. Anderson JA, et al. Distinctive features, categorical perception, and probability learning: Some applications of a neural model. Psychol Rev. 1977;84:413–451.
2. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232(2):331–356.
3. Gauthier I, Behrmann M, Tarr MJ. Are Greebles like faces? Using the neuropsychological exception to test the rule. Neuropsychologia. 2004;42(14):1961–1970.
4. Gauthier I, Tarr MJ. Becoming a “Greeble” expert: Exploring mechanisms for face recognition. Vision Res. 1997;37(12):1673–1682.
5. Hebb DO. Organization of behavior New York: John Wiley & Sons; 1949.
6. James W. The principles of psychology New York: Henry Holt & Sons, Inc; 1890.
7. Rumelhart DE, Zipser D. Feature discovery by competitive learning. Cogn Sci. 1985;9:75–112.
1. Adrian ED, Matthews R. The action of light on the eye: Part I The discharge of impulses in the optic nerve and its relation to the electric changes in the retina. J Physiol. 1927;63(4):378–414.
2. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.
3. Hebb DO. Organization of behavior New York: John Wiley & Sons; 1949.
4. Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33(3):253–258.
5. Krupa DJ, Thompson JK, Thompson RF. Localization of a memory trace in the mammalian brain. Science. 1993;260(5110):989–991.
6. Marr D. A theory of cerebellar cortex. J Physiol. 1969;202(2):437–470.
7. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;5:115–133.
8. Medina JF, et al. Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol. 2000;10(6):717–724.
9. Minsky M, Papert S. Perceptrons: An introduction to computational geometry Cambridge, MA: MIT Press; 1969.
10. Ojakangas CL, Ebner TJ. Purkinje cell complex and simple spike changes during a voluntary arm movement learning task in the monkey. J Neurophysiol. 1992;68(6):2222–2236.
11. Ojakangas CL, Ebner TJ. Purkinje cell complex spike activity during voluntary motor learning: Relationship to kinematics. J Neurophysiol. 1994;72(6):2617–2630.
12. Rescorla RA, Wagner AR. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Black A, Prokasy WF, eds. Classical conditioning II. New York: Appleton-Century-Crofts; 1972;64–69.
13. Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65:386–408.
14. Widrow B, Hoff ME. Adaptive switching circuits. IRE WESCON Convention Record New York: IRE; 1960; 96–104.
1. Tufte ER, Graves-Morris PR. The visual display of quantitative information. Vol. 2 Cheshire, CT: Graphics Press; 1983; <http://www-personal.umich.edu/~jpboyd/eng403_chap2_tuftegospel.pdf>.
1. Mitra P, Hemant B. Observed Brain Dynamics USA: Oxford University Press; 2007.
2. Brainard DH. The psychophysics toolbox. Spat Vis. 1997;10.4:433–436.
3. Cornelissen FW, Peters EM, John P. The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox. Behav Res Methods Instrum Comput. 2002;34.4:613–617.